ارزیابی آسیب‌پذیری سواحل شمالی خلیج فارس در برابر ریزش‌های نفتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشکده فنی و مندسی، دانشگاه مراغه، مراغه، ایران

2 استاد، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران

3 دانش آموخته کارشناس‌ارشد، گروه مهندسی عمران، موسسه آموزش عالی علم و فن، ارومیه، ارومیه، ایران

4 دانشجوی کارشناسی ارشد، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه مراغه، مراغه، ایران

چکیده

وقوع ریزش‌های نفتی در دریاها و اقیانوس‌ها موجب بروز آسیب‌های کوتاه‌مدت و بلندمدت بسیاری به سواحل و بوم­­سازگان دریایی می‌شوند. بنابراین به‌منظور کاهش خسارات، نقشه‌های جامع آسیب‌پذیری سواحل می‌توانند به‌عنوان ابزاری قدرتمند در اختیار تصمیم‌گیرندگان مدیریت سواحل و نیز تیم مقابله اضطراری با ریزش‌ها قرار بگیرند. در پژوهش حاضر، با تلفیق مدل ریاضی مسیریابی لکه نفتی و نرم‌افزار ArcGIS، سواحل شمالی خلیج‌فارس بر اساس مواجهه با آلودگی‌های نفتی مورد ارزیابی قرار گرفتند. به­همین منظور، 20 سناریو ریزش فرضی با نوع نفت و زمان وقوع تصادفی در فصل‌های تابستان و زمستان طراحی شدند. سپس با استفاده از نرم‌افزار لاگرانژی GNOME مسیر حرکت لکه نفتی و زمان رسیدن آن به سواحل شبیه‌سازی شد و بر اساس آن ماتریس مواجهه هر ناحیه ساحلی با آلودگی تشکیل شد. در نهایت، سواحل شمالی خلیج به پنج سطح آسیب‌‌پذیری طبقه‌بندی شدند. نتایج نشان داد که در تابستان محدوده بندرهای عسلویه و بوشهر با احتمال تجمعی به­ترتیب 120 و 94% و در زمستان بندر عسلویه با احتمال تجمعی 119% در کل سناریوها در رده آسیب‌پذیری بسیار بالا قرار گرفتند. همچنین، بندرهای بوشهر و عسلویه بالاترین ضریب پتانسیل آسیب‌رسانی به منطقه را به خود اختصاص دادند. بر اساس نتایج این پژوهش، آسیب‌پذیری سواحل به‌طور قابل‌توجهی تحت تأثیر تغییرات فصلی شرایط اقلیمی منطقه و وضعیت جریان قرار دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Vulnerability Assessment of The Northern Coasts of The Persian Gulf to Oil Spills

نویسندگان [English]

  • Kameleh Aghajanloo 1
  • Mirali Mohammadi 2
  • Mahdi Yadegar Azadi 3
  • Farzad Ghatei 4
1 Assist. Professor, Department of Civil Engineering, Engineering Faculty, University of Maragheh, Maragheh, Iran
2 Professor, Department of Civil Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
3 M.Sc. Alumni, Department of Water Science Engineering, Faculty of Civil and Environmental Engineering, Tehran University, Tehran, Iran
4 M.Sc. Student, Department of Civil Engineering, Collage of Science and Technology, University of Maragheh, Maragheh, Iran
چکیده [English]

Introduction: The oil spill incidents on marine environment can cause short-term and long-term irreparable damage to coasts, ports, and especially to aquatic ecosystems. In order to minimize the harmful effects, it is essential to have basic management tools to support emergency response actions. One of the most important strategies is to determine the vulnerability of areas to accidents. Due to the importance of the northern coasts of the Persian Gulf in terms of exposure to various types of oil pollution, providing a support system using GNOME processor mathematical model and GIS capabilities were used to determine the vulnerability of these areas.
Materials and Methods: To implement the stochastic modeling process, first, a database of environmental data and physical and chemical properties of the type of oil transported by ships in the region was prepared. During the simulation, the input data of the models were randomly collected from this bank. In addition, the areas with the highest potential for oil spills were identified as pollution release points and the areas with the highest probability of receiving oil pollution were identified as pollution receiving areas. Accordingly, in order to cover the maximum possible uncertainties in the studies, hypothetical oil spill scenarios were designed in which the behavior of oil in the days after the spill was simulated using GNOME software. The outputs of the mathematical model used are not presented quantitatively. Therefore, by entering the model outputs into the ArcGIS environment, the amount of oil distribution in each area and the amount of pollution exposure of the coastlines were calculated. Thus, based on criteria such as the frequency of exposure to oil pollution and the retention time of oil slicks in selected areas, the vulnerability of each area to oil spills and high-risk scenarios were evaluated. By transferring the quantitative analysis data to the ArcGIS environment, a map of the vulnerability of the northern coasts of the Persian Gulf to oil spills was prepared.
Results: According to the scenarios defined in this study, the northern coast of Qeshm Island and the areas around Imam Khomeini Port in both seasons (summer and winter) have the lowest vulnerability to oil spills. Moreover, the highest level of vulnerability areas was Genaveh, Bushehr, Assaluyeh and Kangan ports in summer and the Assaluyeh port in winter. In fact, as expected, most of the coastal areas are in the range of moderate to high vulnerability due to the diversion of oil to the coast in summer. According to the results, the ports of Assaluyeh and Bushehr and the point near the Strait of Hormuz are among the areas with high damage levels in both summer and winter. In other words, in the event of an accident, oil could contaminate a large part of the Gulf coast.
Conclusion: In summary, the ports of Genaveh, Bushehr, Assaluyeh and Kangan in summer and the port of Assaluyeh in winter are at the highest level of vulnerability. Based on the oil retention time in different areas, the southern areas of Qeshm Island, and Kangan and Bushehr Port with the highest average oil retention time in all scenarios are introduced as the most vulnerable areas. In both summer and winter, in the event of an accident in the area of ​​Qeshm Island and the ports of Bushehr and Assaluyeh, it can cause the most damage to the northern shores of the Gulf. Therefore, it is necessary to adopt more detailed instructions to maintain safety in the area.

کلیدواژه‌ها [English]

  • Oil spill
  • Persian Gulf
  • Risk potential
  • Vulnerability levels
Aghajanloo, K. and Pirooz, M. D. (2014). Three-dimensional numerical modeling of oil spill behavior in marine environment. Int. J. Environ. Res., 8(3), 779-788. DOI: 10.22059/IJER.2014.771.
Aghajanloo, K., Pirooz, M. D. and Namin, M. M. (2013). Numerical simulation of oil spill behavior in the Persian Gulf. Int. J. Environ. Res., 7(1), 81-96. DOI: 10.22059/IJER.2012.588.
Al-Amirah, A. S. (1985). The nowruz oil spill in the Arabian Gulf: case study of Saudi Arabia. Geogr. Bull., 27, 16.
Al-Rabeh, A. H., Cekirge, H. M. and Gunay, N. (1992). Modeling the fate and transport of Al-Ahmadi oil spill. Water Air Soil Pollut., 65(3–4), 257–279. DOI: 10.1007/BF00479891.
Al Shami, A., Harik, G., Alameddine, I., Bruschi, D., Garcia, D. A. and El-Fadel, M. (2017). Risk assessment of oil spills along the Mediterranean coast: a sensitivity analysis of the choice of hazard quantification. Sci. Total Environ., 574, 234–245. https://doi.org/10.1016/j.scitotenv.2016.09.064.
Amir-Heidari, P. and Raie, M. (2018). Probabilistic risk assessment of oil spill from offshore oil wells in Persian Gulf. Mar. Pollut. Bull., 136, 291-299. DOI: 10.1016/j.marpolbul.2018.07.068.
Amir-Heidari, P. and Raie, M. (2019). Response planning for accidental oil spills in Persian Gulf: A decision support system (DSS) based on consequence modeling. Mar. Pollut. Bull., 140, 116–128. DOI: 10.1016/j.marpolbul.2018.12.053.
Balogun, A. L., Yekeen, S. T., Pradhan, B. and Wan Yusoff, K. B. (2021). Oil spill trajectory modelling and environmental vulnerability mapping using GNOME model and GIS. Environ. Pollut., 268-A. DOI: 10.1016/j.envpol.2020.115812.
Bhardwaj, N. and Bhaskarwar, A. N. (2018). A review on sorbent devices for oil-spill control. Environ. Pollut., 243, 1758–1771. DOI: 10.1016/j.envpol.2018.09.141.
Elhakeem, A. A., Elshorbagy, W. and Chebbi, R. (2007). Oil spill simulation and validation in the Persian Gulf with special reference to the UAE coast. Water Air Soil Pollut., 184, 243–254. DOI: 10.1007/s11270-007-9413-1.
Goldman, R., Biton, E., Brokovich, E., Kark, S. and Levin, N. (2015). Oil spill contamination probability in the southeastern Levantine basin. Mar. Pollut., Bull., 91(1), 347–356. https://doi.org/10.1016/j.marpolbul.2014.10.050.
Guo, W., Zhang, S. and Wu, G. (2019). Quantitative oil spill risk from offshore fields in the Bohai Sea, China. Sci. Total Environ., 688, 494–504. DOI: 10.1016/j.scitotenv.2019.06.226.
ITOPF, (2019). Oil tanker spill statics.
Kämpf, J. and Sadrinasab, M. (2006). The circulation of the Persian Gulf: a numerical study. Ocean Sci., 2(1), 27–41. DOI: 10.5194/os-2-27-2006.
Kankara, R. S., Arockiaraj, S. and Prabhu, K. (2016). Environmental sensitivity mapping and risk assessment for oil spill along the Chennai Coast in India. Mar. Pollut. Bull., 106(1-2), DOI: 10.1016/j.marpolbul.2016.03.022.
Kankara, R. S. and Subramanian, B. R. (2007). Oil spill sensitivity analysis and risk assessment for Gulf of Kachchh, India, using integrated modeling. J. Coastal Res., 23(23), 1251-1258. DOI: 10.2112/04-0362.1.
Lehr, W., Jones, R., Evans, M., Simecek-Beatty, D. and Overstreet, R. (2002). Revisions of the ADIOS oil spill model. Environ. Model. Softw., 17 (2), 189–197. DOI: 10.1016/S1364-8152(01)00064-0.
Li, P., Cai, Q., Lin, W., Chen, B. and Zhang, B. (2016). Offshore oil spill response practices and emerging challenges. Mar. Pollut. Bull., 110(1), 6–27. DOI: 10.1016/j.marpolbul.2016.06.020.
Liu, X., Meng, R., Xing, Q., Lou, M., Chao, H. and Bing, L. (2015). Assessing oil spill risk in the Chinese Bohai Sea: A case study for both ship and platform related oil spills. Ocean Coast Manag., 108, 140-146. DOI: 10.1016/j.ocecoaman.2014.08.016.
Nelson, J. R., Grubesic, T. H., Sim, L., Rose, K. and Graham, J. (2015). Approach for assessing coastal vulnerability to oil spills for prevention and readiness using GIS and the blowout and spill occurrence model. Ocean Coast. Manag., 112, 1-12. DOI: 10.1016/j.ocecoaman.2015.04.014.
Rabbani, A. R., Kotarba, M. J., Baniasad, A. R., Hosseiny, E. and Wieclaw, D. (2014). Geochemical characteristics and genetic types of the crude oils from the Iranian sector of the Persian Gulf. Org. Geochem., 70, 29-43. DOI: 10.1016/j.orggeochem.2014.02.010.
Ranjbar, P., Shafieefar, M. and Rezvandoust, J. (2014). Modeling of oil spill and response in support of decreasing environmental oil effects case study: blowout from Khark subsea pipelines (Persian Gulf). Int. J. Environ. Res., 8(2), 289-296. DOI: 10.22059/IJER.2014.719.
Santos, C. F. and Andrade, F. (2009). Environmental sensitivity of the Portuguese coast in the scope of oil spill events-comparing different assessment approaches. J. Coast. Res., 56, 885–889.
Santos, F. C., Michel, J., Neves, M., Janeiro, J., Andrade, F. and Orbach, M. (2013). Marine spatial planning and oil spill risk analysis: finding common grounds. Mar. Pollut. Bull., 74(1), 73–81. DOI: 10.1016/j.marpolbul.2013.07.029.
Sepp Neves, A. A., Pinardi, N., Martins, F., Janeiro, J., Samaras, A., Zodiatis, G. and De Dominicis, M. (2015). Towards a common oil spill risk assessment framework - Adapting ISO 31000 and addressing uncertainties. J. Environ. Manag., 159, 158–168. https://doi.org/10.1016/j.jenvman.2015.04.044.
Soussi, A., Bersani, C., Sacile, R., Bouchta, D., El-Amarti, A., Seghiouer, H., Nachite, D. and Al-Miys, J. (2020). Coastal Risk Modelling for Oil Spill in the Mediterranean Sea. Adv. Sci. Technol. Eng. Syst. J., 5(4), 273-286. DOI: 10.25046/aj050434.
Vethamony, P., Sudheesh, K., Babu, M. T., Jayakumar, S., Manimurali, R., Saran, A. K., Sharma, L. H., Rajan, B. and Srivastava, M. (2007). Trajectory of an oil spill off Goa, eastern Arabian Sea: Field observations and simulations. Environ. Pollut., 148, 438-444. DOI: 10.1016/j.envpol.2006.12.017.
Yao, F. and Johns, W. E. (2010). A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation. J. Geophys. Res., 115(C11), 1–17.