Abbasi, F., Mohammadi, H., Bazgeer, S., & Azadi, M. (2019). Estimation of the optimum cultivation date and susceptible growth satges to water stress for major areas of rain-fed wheat in Iran.
Water Irrig. Manag.,
8(2), 268-287. DOI:
10.22059/jwim.2019.269695.647.
Abdourahamane, Z. S., Acar, R., & Serkan, Ş. (2019). Wavelet–copula‐based mutual information for rainfall forecasting applications.
Hydrol. Process.,
33(7), 1127-1142. DOI:
10.1002/hyp.13391.
Ahmadi, M. (2014). Analyzing the relationship between Teleconnection Patterns and the occurrence of precipitation in Iran. Tarbiat Modares Univesity, Iran. [In Persian].
Akaike, H. (1974). A new look at the statistical model identification.
IEEE Trans. Autom. Control, 19(6), 716–723
. DOI:
10.1109/TAC.1974.1100705.
Akhlāghi Yengejeh, N., Pirmorādiān, N., Oji, R., & Ashrafzādeh, A. (2021). Performance evaluation of the penalized maximal T and F algorithms in the quality control of monthly and daily climatic time series on the southwest coast of the Caspian Sea.
Geogr. Stud. Coastal Areas J.,
2(3), 53-77. DOI:
10.22124/gscaj.2021.20765.1116.
Bateni, M. M., Behmanesh, J., Bazrafshan, J., Rezaie, H., & De Michele, C. (2018). Simple short-term probabilistic drought prediction using Mediterranean teleconnection information.
Water Resour. Manage.,
32(13), 4345-4358. DOI:
10.1007/s11269-018-2056-8.
Brechmann, E. C., & Schepsmeier, U. (2013). Modeling dependence with C- and D-vine copulas: the R package CDVine.
J. Statis. Software,
52(3), 1–27. DOI:
10.18637/jss.v052.i03.
Dayal, K. S., Deo, R. C., & Apan, A. A. (2020). Development of copula-statistical drought prediction model using the standardized precipitation-evapotranspiration index. In
Handbook of Probabilistic Models (pp. 141-178). Butterworth-Heinemann. DOI:
10.1016/B978-0-12-816514-0.00006-0 .
Espinosa, L. A., Portela, M. M., Pontes Filho, J. D., & Zelenakova, M. (2021). Bivariate modelling of a teleconnection index and extreme rainfall in a small north Atlantic Island.
Climat.,
9(5), 86. DOI:
10.3390/cli9050086.
Farajnia, A., & Moravej, K. (2020). Agro climatic zoning of saffron culture in east Azarbayjan Province.
J. Saffron Res., 7(2), 251-267. DOI:
10.22077/jsr.2018.1445.1057.
Fatehi Marj, A., Borhani Darian, M., & Mahdian H. (2006). Forecasting seasonal rainfall using teleconnection pattern case Study: Orumiyeh Lake Basin. J. Crop Product. Process., 10(3), 45-58 [In Persian].
Frotan, M., & Salahi, B. (2023). Climatic zoning of Ardabil province using multivariate methods.
J. Environ.l Sci. Stud.,
8(1), 6238-6247 [In Persian], DOI:
10.22034/jess.2022.369206.1903.
Ghaemi, H., Zarin, A., & Khoshakhlagh. F. (2012). Climatology of Arid Regions. Publisher: SAMT. 8th Print Publication: 2014. 432 pp.
Ghavidel Rahimi, Y., Farajzadeh Asl, M., & Kakapor, S. (2014). Investigation on North Sea-Caspian Teleconnection Pattern Effect on Autumn Rainfall Fluctuations in West and Northwest Regions of Iran. Geogra. Plan., 18(49), 217-230 [In Persian].
Jung, J., & Kim, H. S. (2022). Predicting temperature and precipitation during the flood season based on teleconnection.
Geosci. Lett.,
9(1), 4. DOI:
10.1186/s40562-022-00212-3.
Khedun, C. P., Mishra, A. K., Singh, V. P., & Giardino, J. R. (2014). A copula‐based precipitation forecasting model: Investigating the interdecadal modulation of ENSO's impacts on monthly precipitation.
Water Resour. Res.,
50(1), 580-600. DOI:
10.1002/2013WR013763.
Kolmogorov, A. N. (2013). Foundations of the theory of probability: Martino Fine Books, Connecticut.
Madadgar, S., AghaKouchak, A., Shukla, S., Wood, A. W., Cheng, L., Hsu, K. L., & Svoboda, M. (2016). A hybrid statistical‐dynamical framework for meteorological drought prediction: application to the southwestern United States.
Water Resour. Res.,
52(7), 5095-5110. DOI:
10.1002/2015WR018547.
Mai, J. F., & Scherer, M. (2017).
Simulating copulas: stochastic models, sampling algorithms, and applications, 2
nd Edition (Series in Quantitative Finance, 6). DOI:
10.1142/10265.
Maity, R., Chanda, K., Dutta, R., Ratnam, J. V., Nonaka, M., & Behera, S. (2020). Contrasting features of hydroclimatic teleconnections and the predictability of seasonal rainfall over east and west Japan.
Meteorol.Appl.,
27(1), e1881. DOI:
10.1002/met.1881.
Mirhashemi, H., & Hasanvand, Z. (2023). The effect of teleconnection patterns on monthly rainfall in Khorram Abad and Kermanshah stations.
Water Soil Manage. Model.,
3(4), 133-151. [In Persian]. DOI:
10.22098/mmws.2022.11702.1159.
Mirzayi Hasanlo, A., Abghari, H., & Erfanian, M. (2020). Spatial distribution of daily and monthly rainfall concentration indicators in rain gauge stations of West Azerbaijan Province. Exten. Develop. Watershed Manage., 8(30), 44-56 [In persian].
Modaresi, F., Araghinejad, S., Ebrahimi, K. (2015). Assessment of model fusion strategy for increasing the accuracy of autumn rainfall forecasting. J. Agri. Meteorol., 3(2), 1-13 [In persian].
Najafi, H., Massah Bavani, A., Irannejad, P., & Robertson, A. (2017). Application of North American multi-model ensemble for Iran’s seasonal precipitation forecasts. Iran Water Resour. Res., 13(4), 28-38 [In persian].
Nelsen, R.B. (2006). An introduction to copulas. Springer. 3th edition, New York. 269 pp.
Nguyen-Huy, T., C Deo, R., Mushtaq, Sh., An-Vo, D. A., & Khan, Sh. (2018), Modeling the joint influence of multiple synoptic- scale, climate mode indices on Australian wheat yield using copula-based approach,
Europ. J. Agron,
98, 65-81. DOI:
10.1016/j.eja.2018.05.006.
Nguyen-Huy, T., Deo, R. C., An-Vo, D. A., Mushtaq, S., & Khan, S. (2017). Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones.
Agri. Water Manage.,
191, 153-172.
DOI: 10.1016/j.agwat.2017.06.010.
Nourani, V., Sattari, M. T., & Molajou, A. (2016). Long-Led precipitation forecasting in Urmia synoptic station by sea surface temperatures of the Black, Mediterranean and Red Seas. One-day Joint Workshop-cum-Seminar on Soft Computing Methods in Water Resources Engineering. Nicosia. ITU-North Cyprus [In Persian].
Saligheh, M., (2017). Synoptic Climatology of Iran. Publisher: SAMT. 280 pp.
Scholz, F. W., & Stephens, M. A. (1987). K-sample Anderson–Darling tests.
J. Am. Statis. Assoc.,
82(399), 918-924. DOI:
10.1080/01621459.1987.10478517.
Shabanpour, F., Bazrafshan, J., & Araghinejad, S. (2021). Evaluation of the effect of bias correction methods on the skill of seasonal precipitation forecasts of CFSv2 climate model.
Iran. J. Soil Water Res.,
51(12), 3017-3032. DOI:
10.22059/ijswr.2020.306717.668680.
Sklar, A. (1959). Distribution functions of n dimensions and margins. Publications of the Institute of Statistics of the University of Paris, 8, 229-231. [In French].
Szentimrey, T., Hoffmann, L., & Lakatos, M. (2017). Abstract book.
9th Seminar for Homogenization and Quality Control in Climatological Databases and 4th Conference on Spatial Interpolation Techniques in Climatology and Meteorology.
DOI: 10.21404/9.SemHQC4.ConfSI.2017.
Wang, X. L. (2008). Penalized maximal F-test for detecting undocumented mean-shifts without trend-change.
J. Atmos. Oceanic Tech.,
25(3), 368-384. DOI:
10.1175/2007JTECHA982.1.
Xie, Y., Liu, S., Fang, H., Ding, M., & Liu, D. (2022). A study on the precipitation concentration in a Chinese region and its relationship with teleconnections indices.
J. Hydrol.,
612, 128203. DOI:
10.1016/j.jhydrol.2022.128203.
Yanto, Rajagopalan, B., & Regonda, S. K. (2023). Linear and copula model for understanding climate drivers of hydroclimatic extremes: a case study of Serayu river basin, Indonesia.
Acta Geophys., 1-12. DOI:
10.1007/s11600-023-01078-5.