نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی منابع آب، دانشگاه ملایر، ملایر، ایران

2 استادیار، گروه مهندسی خاک و آب، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران

چکیده

با توجه‌ به‌ تنوع مدل­های‌ بارش-رواناب، بررسی قابلیت‌ها و محدودیت‌ها برای انتخاب مدلی مناسب‌، ضروری است. هدف از این پژوهش، ارزیابی عملکرد مدل‌های هیدرولوژیکی بارش-رواناب در حوزه آبخیز ملایر می‌باشد. در این مطالعه، شبیه‌سازی‌ بارش-رواناب با استفاده از مدل‌های SWAT و IHACRES و داده‌های هواشناسی در طی دوره آماری 1383 تا 1398 انجام شد. واسنجی و اعتبارسنجی مدل با استفاده از روش  SUFI-2محاسبه شد. نتایج تحلیل حساسیت نشان داد، متغیرهای ذوب برف، هدایت هیدرولیکی اشباع خاک و دمای بارش برف جزء مهمترین‌ متغیرهای‌ کنترل کننده رواناب ‌جریان در حوزه آبخیز مورد مطالعه‌ است. در مدل SWAT، ضرایب‌ NS و R2 در مرحله واسنجی، 68/0 و 65/0 و در مرحله اعتبارسنجی 63/0 و 70/0 محاسبه شد که حاکی از کارایی مدل SWAT در برآورد جریان حوضه بوده است. بر اساس نتایج‌ شبیه‌سازی مدل‌ IHACRES، مقادیر‌ R2 و NS در دوره واسنجی به ترتیب 66/0 و 58/0 و در دوره اعتبارسنجی 52/0 و 51/0 بود. با توجه به اینکه مدل IHACRES رواناب را در مقیاس روزانه شبیه‌سازی می‌نماید، می‌توان کارایی مدل را قابل قبول ارزیابی نمود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Rainfall-Runoff Simulation of Malayer Basin Using SWAT and IHACRES Models

نویسندگان [English]

  • Saeed Eskandari 1
  • Amin Toranjian 2

1 M.Sc., Department of Soil and Water Engineering, Faculty of Agriculture, Malayer University, Malayer, Iran

2 Assist. Professor, Department of Soil and Water Engineering, Faculty of Agriculture, Malayer University, Malayer, Iran

چکیده [English]

Considering the diverse landscape of rainfall-runoff models, a thorough evaluation of their capabilities and limitations is essential for the selection of an optimal model. This study aims to assess the performance of rainfall-runoff hydrological models in the Malayer watershed. In this study, Rainfall-runoff simulation was carried out using SWAT and IHACRES models and meteorological data from 2005 to 2020. The calibration and validation of the model were done using the SUFI-2 algorithm. The results of sensitivity analysis showed that the melting factor, hydraulic conductivity of soil saturation, and snowfall temperature are the most important parameters controlling the flow rate in the study area. The R2 and NS coefficients for SWAT were calculated as 0.68 and 0.65 in the calibration period and 0.63 and 0.70 in the validation period, respectively which in these results showed the SWAT model has suitable efficiency for estimating the watershed flow. Based on the simulation results of the IHACRES model, the values ​​of R2 and NS are 0.66 and 0.58 in the calibration period and 0.52 and 0.51 in the validation period, respectively. Considering that the IHACRES model simulates runoff on a daily scale, the efficiency of the model can be evaluated as acceptable.

کلیدواژه‌ها [English]

  • Efficiency Model
  • Surface Water
  • Watershed
  • Water Resources Management
Ahmadi, M., Dadashi Roudbari, A., & Deyrmajai, A. (2020). Runoff Estimation Using IHACRES Model Based on CHIRPS Satellite Data and CMIP5 Models (Case Study: Gorganroud Basin- Aq Qala Area). Iran. J. Soil Water Res., 51(3), 659-671. [In Persian] DOI: 10.22059/ijswr.2019.289144.668316.
Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., & Zehtabiyan, G. R. (2019). Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall-runoff simulation (case study: Kan watershed, Iran). Phys. Chem. Earth, 111, 65-77 DOI: 10.1016/j.pce.2019.05.002
Arnold, J. G., R. Srinivasan, R. S., Muttiah, and J. R. Williams. (1998). Large-area hydrologic modeling and assessment: Part I.Model development. J. American Water Res. Assoc. 34(1), 73-89 DOI: 10.1111/j.1752-1688.1998.tb05961.x
Abushandi, E., & Merkel, B. (2013). Modelling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan. Water Resour. Manag., 27, 2391-2409 DOI: 10.1007/s11269-013-0293-4
Benaman, J. and Shoemaker, C.A. (2005). An analysis of high-flow sediment event data for evaluating model performance, Hydrolog. Process.,19(3), 605-620 DOI: 10.1002/hyp.5608
Diriba, B.T. (2021). Surface runoff modeling using SWAT analysis in Dabus watershed, Ethiopia. J. Sustain. Water. Res. Manage., 7(96), 1-11. DOI:  10.1007/s40899-021-00573-1
Fatehi, Z., & Shahoei, S. V. (2020). Application of SWAT Model for Simulating Monthly Runoff, Lake Urmia Watershed in Kurdistan Province, Iran. Environ. Water Eng., 6(3), 294-304. [In Persian] DOI: /10.22034/jewe.2020.218842.1346
George, S. and Sathian, K. (2016). Assessment of water balance of a watershed using SWAT model for water resources management, Int. J. Eng. Res. Sci. Technol., 5, 177–184 DOI: 10.5281/zenodo.48859
Getachew Tegegne, G., Park, D. K., & Kim, Y. O. (2017). Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. J. Hydrol. Reg. Stud., 14, 49-66 DOI: 10.1016/j.ejrh.2017.10.002
Green, C. H., Arnold, J. G., Williams, J. R., Haney, R., & Harmel, R. D. (2007). Soil and water assessment tool hydrologic and water quality evaluation of poultry litter application to small-scale subwatersheds in Texas. Trans. ASABE, 50(4), 1199-1209 DOI: 10.13031/2013.23634
Golshan, M., Kavian, A., Ruohani, H., & Esmali Ouri, A. (2015). Effect of Scale on SWAT Model Performance in Simulation of Runoff (Case Study: Haraz Catchment in Mazandaran Province). Iran. J. Soil Water Res.46(2), 293-303. [In Persian] DOI: 10.22059/ijswr.2015.55934
Kalhor, E., Nouri, H., & Ildoromi, A. (2018). Climate Change Effects on Soil Freezing Depth in a Mountainous Region and a Semi-Arid Climate on the Malayer Plain. J. Watershed Manag. Res.31(3), 40-55 [In Persian] DOI: 10.22092/wmej.2018.121655.1113
Lin, Z., & Radcliffe, D. E. (2006). Automatic calibration and predictive uncertainty analysis of a semidistributed watershed model. Vadose Zone J. 5(1), 248-260 DOI: 10.2136/vzj2005.0025
Lee, M., Park, G., Park, M., Park, J., Lee, J., & Kim, S. (2010). Evaluation of non-point source pollution reduction by applying Best Management Practices using a SWAT model and QuickBird high resolution satellite imagery. J. Environ. Sci., 22(6), 826-833. DOI: 10.1016/S1001-0742(09)60184-4
Littlewood, I. G., Clarke, R. T., Collischonn, W., & Croke, B. F. (2007). Predicting daily streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian watersheds. Environ. Model Software, 22(9), 1229-1239. DOI: 10.1016/j.envsoft.2006.07.004
Mehri, S., Moradi, H. R., & Mostafazadeh, R. (2023). Simulation and determination of hydrological balance components in the upstream of Gheshlagh Dam Using SWAT model. Environ. Water Eng.9(4), 485-498. [In Persian] DOI: 10.22034/ewe.2023.360340.1805
Mengistu, A. G., van Rensburg, L. D., & Woyessa, Y. E. (2019). Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid watersheds in South Africa. J. Hydrol. Reg. Stud., 25, 100621 DOI: 10.1016/j.ejrh.2019.100621. DOI: 10.1016/j.ejrh.2019.100621
Mokhtari, F., Honarbakhsh, A., Soltani, S., Abdolahi, K., & Pajohesh, M. (2022). Evaluating Hydrological SWAT Model in Runoff Simulation of Karkheh Watershed. DEEJ., 9(27), 47-58. [In Persian]  DOI: 10.22052/DEEJ.2020.9.27.25
Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations. Agr. Forest Meteorol., 98, 257-277 DOI: https://doi.org/10.1016/S0168-1923(99)00102-1
Naseri, F., azari, M., & Dastoorani, M. T. (2018). Simulation of Stream Flow and Sediment Yield in Fariman Dam Watershed Using SWAT Model and Genetic Algorithm. Water Soil, 32(3), 447-462. [In Persian]  DOI: 10.22067/jsw.v32i3.68900
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol., 10(3), 282-290. DOI: 10.1016/0022-1694(70)90255-6
Negash, T. Z., Mekuria, A. D., Solomon, A. T., & Yitea, S. G. (2024). Predicting runoff and sediment yields using soil and water assessment tool (SWAT) model in the Jemma Subbasin of Upper Blue Nile, Central Ethiopia. Environ. Challenges, 14.100806. DOI: 10.1016/j.envc.2023.100806
Pyo, J., Pachepsky, Y. A., Kim, M., Baek, S. S., Lee, H., Cha, Y., & Cho, K. H. (2019). Simulating seasonal variability of phytoplankton in stream water using the modified SWAT model. Environ. Model Software, 122, 104073. DOI: 10.1016/j.envsoft.2017.11.005
Rivas-Tabares, D., Tarquis, A. M., Willaarts, B., & De Miguel, A. (2019). An accurate evaluation of water availability in sub-arid Mediterranean watersheds through SWAT: Cega-Eresma-Adaja. Agric. Water Manag., 212, 211-225. DOI: 10.1016/j.agwat.2018.09.012
Sadeghi S H, Ghasemieh H, Sadatinegad S J. (2015). Performance evaluation of the IHACRES hydrological model in wet areas (Case study: Navrud Basin, Gillan).  Agric. Water Manag., 19(73), 73-83. [In Persian]  DOI: 10.18869/acadpub.jstnar.19.73.73
Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the swat model on a large rwer basin with point and nonpoint sources. J. Am. Water Resour. Assoc., 37(5), 1169-1188. DOI: 10.1111/j.1752-1688.2001.tb03630.x
Tuppad, P., Kannan, N., Srinivasan, R., Rossi, C. G., & Arnold, J. G. (2010). Simulation of agricultural management alternatives for watershed protection. Water Resour. Manag., 24, 3115-3144 DOI: 10.1007/s11269-010-9598-8
Van Griensven, A., Ndomba, P., Yalew, S., & Kilonzo, F. (2012). Critical review of SWAT applications in the upper Nile basin countries. Hydrol. Earth Syst. Sci., 16(9), 3371-3381. DOI: 10.5194/hessd-9-3761-2012
Yang, X., Magnusson, J & Xu, C.-Y.(2019). Transferability of regionalization methods under changing climate. J. Hydrol., 568, 67-81. DOI: 10.1016/j.jhydrol.2018.10.030
Zorratipour, M., Zarei, H., Sharifi, M., & Radmanesh, F. (2021). Hydrological simulation of Bakhtegan basin in Iran using the SWAT model. Irriga. Sci. Eng., 44(2). [In Persian] DOI: 10.22055/jise.2021.36821.1964