Ahmadi, M., Dadashi Roudbari, A., & Deyrmajai, A. (2020). Runoff Estimation Using IHACRES Model Based on CHIRPS Satellite Data and CMIP5 Models (Case Study: Gorganroud Basin- Aq Qala Area).
Iran. J. Soil Water Res., 51(3), 659-671. [In Persian] DOI:
10.22059/ijswr.2019.289144.668316.
Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., & Zehtabiyan, G. R. (2019). Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall-runoff simulation (case study: Kan watershed, Iran).
Phys. Chem. Earth, 111, 65-77 DOI:
10.1016/j.pce.2019.05.002
Arnold, J. G., R. Srinivasan, R. S., Muttiah, and J. R. Williams. (1998). Large-area hydrologic modeling and assessment: Part I.Model development.
J. American Water Res. Assoc. 34(1),
73-89 DOI:
10.1111/j.1752-1688.1998.tb05961.x
Abushandi, E., & Merkel, B. (2013). Modelling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan.
Water Resour. Manag., 27, 2391-2409 DOI:
10.1007/s11269-013-0293-4
Benaman, J. and Shoemaker, C.A. (2005). An analysis of high-flow sediment event data for evaluating model performance,
Hydrolog. Process.,19(3), 605-620 DOI:
10.1002/hyp.5608
Diriba, B.T. (2021). Surface runoff modeling using SWAT analysis in Dabus watershed, Ethiopia. J. Sustain.
Water. Res. Manage., 7(96),
1-11. DOI:
10.1007/s40899-021-00573-1
Fatehi, Z., & Shahoei, S. V. (2020). Application of SWAT Model for Simulating Monthly Runoff, Lake Urmia Watershed in Kurdistan Province, Iran.
Environ. Water Eng., 6(3), 294-304. [In Persian] DOI:
/10.22034/jewe.2020.218842.1346
George, S. and Sathian, K. (2016). Assessment of water balance of a watershed using SWAT model for water resources management,
Int. J. Eng. Res. Sci. Technol., 5, 177–184 DOI:
10.5281/zenodo.48859
Getachew Tegegne, G., Park, D. K., & Kim, Y. O. (2017). Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin.
J. Hydrol. Reg. Stud., 14, 49-66 DOI:
10.1016/j.ejrh.2017.10.002
Green, C. H., Arnold, J. G., Williams, J. R., Haney, R., & Harmel, R. D. (2007). Soil and water assessment tool hydrologic and water quality evaluation of poultry litter application to small-scale subwatersheds in Texas.
Trans. ASABE, 50(4), 1199-1209 DOI:
10.13031/2013.23634
Golshan, M., Kavian, A., Ruohani, H., & Esmali Ouri, A. (2015). Effect of Scale on SWAT Model Performance in Simulation of Runoff (Case Study: Haraz Catchment in Mazandaran Province).
Iran. J. Soil Water Res.,
46(2), 293-303. [In Persian] DOI:
10.22059/ijswr.2015.55934
Kalhor, E., Nouri, H., & Ildoromi, A. (2018). Climate Change Effects on Soil Freezing Depth in a Mountainous Region and a Semi-Arid Climate on the Malayer Plain.
J. Watershed Manag. Res.,
31(3), 40-55 [In Persian] DOI:
10.22092/wmej.2018.121655.1113
Lin, Z., & Radcliffe, D. E. (2006). Automatic calibration and predictive uncertainty analysis of a semidistributed watershed model.
Vadose Zone J. 5(1), 248-260 DOI:
10.2136/vzj2005.0025
Lee, M., Park, G., Park, M., Park, J., Lee, J., & Kim, S. (2010). Evaluation of non-point source pollution reduction by applying Best Management Practices using a SWAT model and QuickBird high resolution satellite imagery.
J. Environ. Sci., 22(6), 826-833. DOI:
10.1016/S1001-0742(09)60184-4
Littlewood, I. G., Clarke, R. T., Collischonn, W., & Croke, B. F. (2007). Predicting daily streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian watersheds.
Environ. Model Software, 22(9), 1229-1239. DOI:
10.1016/j.envsoft.2006.07.004
Mehri, S., Moradi, H. R., & Mostafazadeh, R. (2023). Simulation and determination of hydrological balance components in the upstream of Gheshlagh Dam Using SWAT model.
Environ. Water Eng.,
9(4), 485-498. [In Persian] DOI:
10.22034/ewe.2023.360340.1805
Mengistu, A. G., van Rensburg, L. D., & Woyessa, Y. E. (2019). Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid watersheds in South Africa.
J. Hydrol. Reg. Stud., 25, 100621 DOI: 10.1016/j.ejrh.2019.100621. DOI:
10.1016/j.ejrh.2019.100621
Mokhtari, F., Honarbakhsh, A., Soltani, S., Abdolahi, K., & Pajohesh, M. (2022). Evaluating Hydrological SWAT Model in Runoff Simulation of Karkheh Watershed.
DEEJ.,
9(27), 47-58. [In Persian] DOI:
10.22052/DEEJ.2020.9.27.25
Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations.
Agr. Forest Meteorol., 98, 257-277 DOI:
https://doi.org/10.1016/S0168-1923(99)00102-1
Naseri, F., azari, M., & Dastoorani, M. T. (2018). Simulation of Stream Flow and Sediment Yield in Fariman Dam Watershed Using SWAT Model and Genetic Algorithm.
Water Soil, 32(3), 447-462. [In Persian] DOI:
10.22067/jsw.v32i3.68900
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I-A discussion of principles.
J. Hydrol., 10(3), 282-290. DOI:
10.1016/0022-1694(70)90255-6
Negash, T. Z., Mekuria, A. D., Solomon, A. T., & Yitea, S. G. (2024). Predicting runoff and sediment yields using soil and water assessment tool (SWAT) model in the Jemma Subbasin of Upper Blue Nile, Central Ethiopia.
Environ. Challenges, 14.100806
. DOI:
10.1016/j.envc.2023.100806
Pyo, J., Pachepsky, Y. A., Kim, M., Baek, S. S., Lee, H., Cha, Y., & Cho, K. H. (2019). Simulating seasonal variability of phytoplankton in stream water using the modified SWAT model.
Environ. Model Software, 122, 104073. DOI:
10.1016/j.envsoft.2017.11.005
Rivas-Tabares, D., Tarquis, A. M., Willaarts, B., & De Miguel, A. (2019). An accurate evaluation of water availability in sub-arid Mediterranean watersheds through SWAT: Cega-Eresma-Adaja.
Agric. Water Manag., 212, 211-225. DOI:
10.1016/j.agwat.2018.09.012
Sadeghi S H, Ghasemieh H, Sadatinegad S J. (2015). Performance evaluation of the IHACRES hydrological model in wet areas (Case study: Navrud Basin, Gillan).
Agric. Water Manag., 19(73), 73-83. [In Persian] DOI:
10.18869/acadpub.jstnar.19.73.73
Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the swat model on a large rwer basin with point and nonpoint sources.
J. Am. Water Resour. Assoc., 37(5), 1169-1188. DOI:
10.1111/j.1752-1688.2001.tb03630.x
Tuppad, P., Kannan, N., Srinivasan, R., Rossi, C. G., & Arnold, J. G. (2010). Simulation of agricultural management alternatives for watershed protection.
Water Resour. Manag., 24, 3115-3144 DOI:
10.1007/s11269-010-9598-8
Van Griensven, A., Ndomba, P., Yalew, S., & Kilonzo, F. (2012). Critical review of SWAT applications in the upper Nile basin countries.
Hydrol. Earth Syst. Sci., 16(9),
3371-3381. DOI:
10.5194/hessd-9-3761-2012
Yang, X., Magnusson, J & Xu, C.-Y.(2019). Transferability of regionalization methods under changing climate
. J. Hydrol., 568, 67-81. DOI:
10.1016/j.jhydrol.2018.10.030
Zorratipour, M., Zarei, H., Sharifi, M., & Radmanesh, F. (2021). Hydrological simulation of Bakhtegan basin in Iran using the SWAT model.
Irriga. Sci. Eng., 44(2). [In Persian] DOI:
10.22055/jise.2021.36821.1964