نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

2 استاد، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

3 دانشیار، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

4 دانشیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایلام، ایلام، ایران

چکیده

ایبوپروفن یکی از داروهای پر مصرف در سطح جهان است که با ایجاد آلودگی در منابع آبی بر سلامت موجودات زنده تأثیر می‌گذارد. این پژوهش با هدف تعیین کارایی کربن اصلاح شده کاه و کلش کنجد در حذف ایبوپروفن از محلول‌های آبی انجام شد. بدین منظور، از آمونیم کلرید، روی کلرید، و فسفریک اسید برای بهینه‌سازی جاذب استفاده شد. همچنین، تغییرات در سطح جاذب و ویژگی‌های آن با استفاده از میکروسکوپ الکترونی روبشی (SEM) و تکنیک طیف‌سنجی مادون قرمز (FTIR) مطالعه شد. بعد از تعیین شرایط بهینه متغیرهای pH، زمان تماس، دما و دوز جاذب، فرآیند جذب سطحی تحت سه مدل لانگمویر، فروندلیچ و دوبینین-رادوشکویچ مورد بررسی قرار گرفت. از طرفی، از مدل‌های جنبشی سینتیک درجه اول و شبه درجه دوم برای پردازش داده‌های جذب استفاده شد. نتایج نشان داد که، فرآیند جذب سطحی از مدل ایزوترمی فروندلیچ و سینتیک شبه درجه دو پیروی کرده است. pH، زمان تماس، غلظت اولیه ایبوپروفن و دوز جاذب بهینه نیز به‌ترتیب برابر با 3، min 120، mg/l50 و g/l 10/0 در دمای C° 25 بود. نتایج این مطالعه  نشان داد که از بقایای کشاورزی از جمله کاه و کلش کنجد می‌توان به‌عنوان جاذب مؤثر و مقرون به‌صرفه برای حذف باقی‌مانده ترکیبات دارویی از محلول‌های آبی استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Equilibrium and Kinetic study of Ibuprofen Removal from Aqueous Solutions Using Modified Carbon Sesame Straw

نویسندگان [English]

  • Behrouz Sohrabian 1
  • Soheil Sobhan Ardakani 2
  • Bahareh Lorestani 3
  • Mehrdad Cheraghi 3
  • Heshmatollah Nourmoradi 4

1 Ph.D. Scholar, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

2 Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

3 Assoc. Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

4 Assoc. Professor, Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran

چکیده [English]

Ibuprofen is one of the most widely used drugs in the world, which affects the health of living organisms by causing pollution in water sources. Therefore, this study was conducted with the aim of determining the effectiveness of modified carbon of straw and sesame stubble in removing ibuprofen from aqueous solutions. For this purpose, ammonium chloride, zinc chloride, and phosphoric acid were used to optimize the adsorbent. Also, the changes in the absorbent surface and its characteristics were studied using a scanning electron microscope (SEM) and infrared spectroscopy (FTIR) technique. After determining the optimal conditions of pH variables, contact time, temperature, and adsorbent dose, the surface adsorption process was investigated under three Langmuir, Freundlich, and Dubinin-Radoshkevich models. On the other hand, first-order and pseudo-second-order kinetic models were used to process the adsorption data. The results showed that the surface adsorption process followed the Freundlich isotherm model pseudo-second-order kinetics. pH, contact time, initial concentration of ibuprofen, and optimal adsorbent dose were 3, 120 min, 50 mg/l, and 0.10 g/l respectively at 25°C. The results of this study showed that agricultural residues such as straw and sesame stubble can be used as effective and cost-effective adsorbents to remove the remaining pharmaceutical compounds from aqueous solutions.

کلیدواژه‌ها [English]

  • Activated carbon
  • Adsorption isotherm
  • Aqueous solutions
  • Pharmaceutical Residue
Ahmad, M. A., Afandi, N. S. and Bello, O. S. (2017). Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon. Appl. Water Sci., 7, 717–727. DOI. 10.1007/s13201-015-0284-0.
Akar, S., Lorestani, B., Sobhanardakani, S., Cheraghi, M. and Moradi, O. (2019). Surveying the efficiency of Plantanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample. Environ. Monit. Assess., 191(6), 373. DOI. 10.1007/s10661-019-7479-z.
Baccar, R., Sarrà, M., Bouzid, J., Feki, M. and Blánquez, P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem. Eng. J., 211, 310–317.  DOI. 10.1016/j.cej.2012.09.099.
Bello, O. S., Alao, O. C., Alagbada, T. C. and Olattunde, A. M. (2019). Biosorption of ibuprofen using functionalized bean husks. Sustain. Chem. Pharm., 13, 100–151.  DOI. 10.1016/j.scp.2019.100151.
Bello, O. S., Moshood, M. A., Ewetumo, B. A. and Afolabi, I. C. (2020). Ibuprofen removal using coconut husk activated Biomass. Chem. Data Collect., 29, 100533.  DOI. 10.1016/j.cdc.2020.100533.
Cheraghi, M., Lorestani, B., Zandipak, R. and Sobhanardakani, S. (2022). GO@Fe3O4@ZnO@CS nanocomposite as a novel adsorbent for removal of doxorubicin hydrochloride from aqueous solutions. Tox. Rev., 41(1): 82-91. DOI. 10.1080/15569543.2020.1839910.
Cheraghi, M., Sobhanardakani, S., Zandipak, R., Lorestani, B. and Merrikhpour, H. (2015). Removal of Pb(II) from aqueous solutions using waste tea leaves. Iran. J. Toxicol., 9(28), 1247–1253.
Ciríaco, L., Anjo, C., Correia, J., Pacheco, M. and Lopes, A. (2009). Electrochemical degradation of ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes. Electrochim. Acta, 54, 1464–1472. DOI. 10.1016/j.electacta.2008.09.022.
De Luna, M. D. G., Veciana, M. L., Su, C. C. and Lu, M. C. (2012). Acetaminophen degradation by electro-Fenton and photo electro-Fenton using a double cathode electrochemical cell. J. Hazard. Mater., 217, 200–207.  DOI. 10.1016/j.jhazmat.2012.03.018.
Deubner, H. L., Bandemehr, J., Karttunen, A. J. and Kraus, F. (2020). A brief visit to the BeCl2/ZnCl2 system and the prediction of a new polymorph of ZnCl2. Zeitschrift Für Naturforsch. B, 75, 491–496.  DOI. 10.1515/znb-2020-0023.
Dotto, G. L. and McKay, G. (2020). Current scenario and challenges in adsorption for water treatment. J. Environ.Chem.Eng., 8, 103988.  DOI. 10.1016/j.jece.2020.103988.
Dubey, S. P., Dwivedi, A. D., Sillanpää, M. and Gopal, K. (2010). Artemisia vulgaris derived mesoporous honey comb shaped activated carbon for ibuprofen adsorption. Chem. Eng. J., 165(2), 537–544.  DOI. 10.1016/j.cej.2010.09.068.
Farhadian, A., Assar Kashani, S., Rahimi, A., Oguzie, E. E., Javidparvar, A. A., Nwanonenyi, S. C., Yousefzadeh, S..and Nabid, M. R. (2021). Modified hydroxyethyl cellulose as a highly efficient eco-friendly inhibitor for suppression of mild steel corrosion in a 15% HCl solution at elevated temperatures. J. Mol. Liq., 38, 116607.  DOI. 10.1016/j.molliq.2021.116607.
Frӧhlich, A. C., Foletto, E. L. and Dotto, G. L. (2019). Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J. Clean. Prod., 229, 828–837. DOI. 10.1016/j.jclepro.2019.05.037.
Galhetas, M., Mestre, A. S., Pinto, M. L., Gulyurtlu, I., Lopes, H. and Carvalho, A. P. (2014). Carbon-based materials prepared from pine gasification residues for acetaminophen ad-sorption. Chem. Eng. J., 240, 344–351.  DOI. 10.1016/j.cej.2013.11.067.
Ghemit, R., Boutahala, M. and Kahoul, A. (2017). Removal of diclofenac from water with calcined ZnAlFe-CO3 layered double hydroxides: effect of contact time, concentration, pH and temperature. Desalin. Water Treat., 83, 75–85. DOI. 10.5004/dwt.2017.21031.
Ghemit, R., Makhloufi, A., Djebri, N., Flilissa, A., Zerroual, L. and Boutahala, M. (2019). Adsorptive removal of diclofenac and ibuprofen from aqueous solution byorganobentonites: Study in single and binary systems. Groundwater Sustain. Dev., 8, 520–529. DOI. 10.1016/j.gsd.2019.02.004.
Ghoochian, M., Ahmad Panahi, H., Sobhanardakani, S., Taghavi, L. and Hassani, A. H. (2019). Synthesis and application of Fe3O4/SiO2/thermosensitive/PAMAM-CS nanoparticles as a novel adsorbent for removal of tamoxifen from water samples. Microchem. J., 145, 1231–1240.  DOI. 10.1016/j.microc.2018.12.004.
Guedidi, H., Lakehal, I., Reinert, L., Leveque, J-M., Bellakha, N. and Duclaux, N. (2017). Removal of ionic liquids and ibuprofen by adsorption on a microporousactivated carbon: kinetics, isotherms, and poresites. Arab. J. Chem., 13(1), 258270.  DOI. 10.1016/j.arabjc.2017.04.006.
Gulnaz, O., Sahmurova, A. and Kama, S. (2011). Removal of reactive red 198 from aqueous solution by Potamogeton crispus. Chem. Eng. J., 174(2-3), 579–585.  DOI. 10.1016/j.cej.2011.09.061.
Hernando, M. D., Mezcua, M., Fernández-Alba, A. R. and Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments.  Talanta, 69(2), 334–342.  DOI. 10.1016/j.talanta.2005.09.037.
Ho, Y. S. and McKay, G. (1999). Pseudo – second order model for sorption processes. Proc. Biochem., 34(1999), 451–465.  DOI. 10.1016/S0032-9592(98)00112-5.
Hu, X., Xue, Y., Liu, L., Zeng, Y. and Long, L. (2018). Preparation and characterization of Na2S-modified biochar for nickel removal. Environ. Sci. Pollut. Res., 25, 9887–9895. DOI. 10.1007/s11356-018-1298-6.
Iovino, P., Canzano, S., Capasso, S., Erto, A. and Musmarra, D. (2015). A modeling analysis for the assessment of ibuprofen adsorption mechanism onto activated carbons. Chem. Eng. J., 227, 360–367.  DOI. 10.1016/j.cej.2015.04.097.
Javidparvar, A. A., Naderi, R., Ramezanzadeh, B. and Bahlakeh, G.  (2019a). Graphene oxide as a pH-sensitive carrier for targeted delivery of eco-friendly corrosion inhibitors in chloride solution: Experimental and theoretical investigations. J. Ind. Eng. Chem., 72, 196–213.  DOI. 10.1016/j.jiec.2018.12.019.
Javidparvar, A. A., Naderi, R. and Ramezanzadeh, B.(2019b). Designing a potent anti-corrosion system based on graphene oxide nanosheets non-covalently modified with cerium/benzimidazole for selective delivery of corrosion inhibitors on steel in NaCl media. J. Mol. Liq., 284, 415–430.  DOI. 10.1016/j.molliq.2019.04.028.
Javidparvar, A. A., Naderi, R. and Ramezanzadeh, B. (2020). L-cysteine reduced/functionalized graphene oxide application as a smart/control release nanocarrier of sustainable cerium ions for epoxy coating anti-corrosion properties improvement. J. Hazard. Mater., 389, 122135.  DOI. 10.1016/j.jhazmat.2020.122135.
Jung, M. R., Horgen, F. D., Orski, S. V., Rodriguez, C. V., Beers, K. L., Balazs, G. H., Jones, T. T., Work, T. M., Brignac, K. C., Royer, S. J., Hyrenbach, K. D., Jensen, B. A. and Lynch, J. M. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull., 127, 704–716. DOI. 10.1016/j.marpolbul.2017.12.061.
Linga Raju, C., Narasimhulu, K., Gopal, N., Rao, J. and Reddy, B. C. (2002). Electron paramagnetic resonance, optical and infrared spectral studies on the marine mussel Arca burnesi shells. J. Mol. Struct., 608, 201–211.  DOI. 10.1016/S0022-2860(01)00952-8.
Lu, H., Zhu, Z., Zhang, H., Zhu, J., Qiu, Y., Zhu, L. and Küppers, S. (2016). Fenton-like catalysis and oxidation/adsorption performances of acetaminophen and arsenic pollutants in water on a multi metal Cu–Zn–Fe-LDH. ACS Appl. Mater. Interf., 8, 25343–25352.  DOI. 10.1021/acsami.6b08933.
Mashayekh-Salehi, A. and Moussavi, G. (2016). Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl. Desalin. Water Treat., 57(27), 12861–12873.  DOI. 10.1080/19443994.2015.1051588.
Méndez-Arriaga F., Torres-Palma R. A., Pétrier, C., Esplugas, S., Gimenez, J. and Pulgarin, C. (2008). Ultrasonic treatment of water contaminated with ibuprofen. Water Res., 42, 4243–4248.  DOI. 10.1016/j.watres.2008.05.033.
Mondal, S., Bobde, K., Aikat, K. and Halder, G. (2016). Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies. J. Environ. Manage., 182, 581–594. DOI. 10.1016/j.jenvman.2016.08.018. 
Mouni, L., Belkhiri, L. and Bollinger, J. C.  Bouzaza, Assadi A., Tirri A., Dahmoune F., Madani K. and Remini H. (2018). Removal of methylene blue from aqueous solutions by adsorption on Kaolin: kinetic and equilibrium studies. Appl. Clay Sci., 153, 38–45.  DOI. 10.1016/j.clay.2017.11.034.
Nandiyanto, A. B. D., Oktiani, R. and Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indones. J. Sci. Technol., 4, 97–118.  DOI. 10.17509/ijost.v4i1.15806.
Njoku, V., Islam, M. A., Asif, M. and Hameed, B. (2014). Utilization of sky fruit husk agricultural waste to produce high quality activated carbon for the herbicide bentazon adsorption. Chem. Eng. J., 251, 183–191.  DOI. 10.1016/j.cej.2014.04.015.
Nourmoradi, H., Avazpour, M. Ghasemian, N., Heidari, M., Moradnejadi, F., Khodarahmi, K. and Mohammadi Moghadam, F. (2016). Surfactant modified montmorillonite as a low cost adsorbent for 4-chlorophenol: equilibrium, kinetic and thermo dynamic study. J. Taiwan Inst. Chem. Eng., 59, 244–251.  DOI. 10.1016/j.jtice.2015.07.030.
Nourmoradi, H., Farokhi, K., Jafari, A. and Kamarehie, B. (2018). Rwmoval of acetaminophen and ibuprofen from aqueous by activated carbon derived Quercus brantti (Oak) acorn as a low – cost biosorbent. J. Environ. Chem. Eng., 6, 6807–6815.  DOI. 10.1016/j.jece.2018.10.047.
Omidi, A. H., Cheraghi, M., Lorestani, B., Sobhanardakani, S. and Jafari A. (2019). Biochar obtained from cinnamon and cannabis as effective adsorbents for removal of lead ions from water. Environ. Sci. Pollut. Res. 26(27), 27905–27914. DOI. 10.1007/s11356-019-05997-z.
Quesada-Peñate, I., Julcour-Lebigue, C., Jáuregui-Haza, U. J., Wilhelm, A. M. and Delmas, H. (2009). Comparative adsorption of levodopa from aqueous solution on differentactivated carbons. Chem. Eng. J., 152, 183–188.  DOI. 10.1016/j.cej.2009.04.039.
Santaeufemia, S., Torres, E. and Abalde, J. (2018). Biosorption of ibuprofen from aqueous solution using living and dead biomass of the microalga Phaeodactylum tricornutum. J. Appl. Psychol., 30, 471–482. DOI. 10.1007/s10811-017-1273-5.
Sedaghat, S., Samieifar, P. and Attar, M. (2020). comparing the ability of modified Nano clays with multiwall carbon nanotubes in adsorption of ibuprofen from aqueous solutions in the presence of UV light. J. Appl. Res. Chem.,  13(4), 53–61.
Shafiu Kamba, A., Ismail, M., Tengku Ibrahim, T. A. and Zakaria, Z. A. B. (2013). Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa). J. Nanomater., 2013, 398357.  DOI. 10.1155/2013/398357.
Shahmoradi, A. R., Ranjbarghanei, M., Javidparvar, A. A., Guo, L., Berdimurodov, E. and Ramezanzadeh, B. (2021). Theoretical and surface/electrochemical investigations of walnut fruit green husk extract as effective inhibitor for mild-steel corrosion in 1M HCl electrolyte. J. Mol. Liq., 338, 116550.  DOI. 10.1016/j.molliq.2021.116550.
Pajoum Shariati, F., Mehrnia, M. R., Salmasi, B. M., Heran, M., Wisniewski, C. and Sarrafzadeh, M. H. (2010). Membrane bioreactor for treatment of pharmaceutical waste-water containing acetaminophen. Desal., 250, 798–800.  DOI. 10.1016/j.desal.2008.11.044.
Sharma, S. and Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Appl. Water Sci. 7. 1043-1067. DOI. 10.1007/s13201-016-0455-7.
Singh, K. K., Talat, M. and Hasan, S. H. (2006). Removal of lead from aqueous solutions by agricultural waste maize bran. Biores. Technol., 97(16), 2124–2130.  DOI. 10.1016/j.biortech.2005.09.016.
Sobhanardakani, S., Cheraghi, M., Jafari, A. and Zandipak. R. (2020). PECVD synthesis of ZnO/Si thin film as a novel adsorbent for removal of azithromycin from water samples. Int. J. Environ. Anal. Chem., DOI. 10.1080/03067319.2020.1793973.
Sobhanardakani, S., Jafari, A., Zandipak, R. and Meidanchi, A. (2018). Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Proc. Saf. Environ. Prot., 120, 348–357.  DOI. 10.1016/j.psep.2018.10.002.
Sobhanardakani, S., Parvizimosaed, H. and Olyaie, E. (2013). Heavy metals removal from waste waters using organic solid waste-rice husk. Environ. Sci. Pollut. Res., 20(8): 5265–5271. DOI. 10.1007/s11356-013-1516-1.
Streit, A. F. M., Collazzo, G. C., Druzian, S. P. Verdi, R.S., Foletto, E. L., Oliveira, L. F. S. and Dotto, G. L. (2021). Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere, 262, 128322. DOI. 10.1016/j.chemosphere.2020.128322.
Talebzadeh, F., Sobhanardakani, S. and Zandipak, R. (2017). Effective adsorption of As(V) and V(V) ions from water samples using 2,4-dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles. Sep. Sci. Technol., 52(4), 622–633.  DOI. 10.1080/01496395.2016.1262873.
Talebzadeh, F., Zandipak, R. and Sobhanardakani, S. (2016). CeO2 nanoparticles supported on CuFe2O4 nanofibers as novel adsorbent for removal of Pb(II), Ni(II) and V(V) ions from petrochemical wastewater. Desalin. Water Treat., 57(58), 28363–28377.  DOI. 10.1080/19443994.2016.1188733.
Üner, O., Geçgel, Ü., Kolancilar, H. and Bayrak, Y. (2017). Adsorptive removal of Rhodamine with activated carbon obtained from Okra wastes. Chem. Eng. Commun., 204, 772–783.  DOI. 10.1080/00986445.2017.1319361.
Wong, S., Lim, Y., Ngadi, N., Mat, R., Hassan, O., Inuwa, I. M., Mohamed, N. B. and Hor Low, J. (2018). Removal of acetaminophen by activated carbon synthesized from spent tea leaves: equilibrium, kinetics and thermodynamics studies. Powder Technol., 338, 878–886.  DOI. 10.1016/j.powtec.2018.07.075.
Xin, M., Liu, D., Yu, N., Qi, X. and Li, H. (2012). Luminescence properties of ZnS:Cu, Tm semiconductor nanocrystals synthesize by a hydrothermal process. Adv. Mater. Res., 415–417, 499–503.  DOI. 10.4028/www.scientific.net/AMR.415-417.499.
Zabihi, M., Ahmadpour, A. and Haghighi Asl, A. (2009). Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J. Hazard. Mater., 167(1–3), 230–236. DOI. 10.1016/j.jhazmat.2008.12.108.
Zandipak, R., Sobhanardakani, S. and Shirzadi, A. (2020). Synthesis and application of nanocomposite Fe3O4@SiO2@CTAB–SiO2 as a novel adsorbent for removal of cyclophosphamide from water samples. Sep. Sci. Technol., 55(3), 456–470.  DOI. 10.1080/01496395.2019.1566262.