بررسی غلظت فلزات سنگین در رسوبات مصبی رودخانه های مهم بخش جنوبی دریای خزر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی پژوهشی، پژوهشکده علوم دریایی، پژوهشگاه ملی اقیانوس شناسی و علوم جوی، تهران، ایران

2 کارشناس پژوهشی، پژوهشکده علوم دریایی، پژوهشگاه ملی اقیانوس شناسی و علوم جوی، تهران، ایران

چکیده

 در این پژوهش به‌منظور بررسی غلظت فلزات سنگین در رودخانه‌های مهم بخش جنوبی دریای خزر شامل گرگانرود، قره‌سو، تجن، بابلرود، سردآبرود، صفارود، چشمه کیله، و سفیدرود، در سه نقطه بالادست، مصب و عمق 1 تا m 10 دریا، نمونه رسوب سطحی و یک نمونه مغزه برداشت شد. آنالیزهای دانه‌بندی، سنجش ماده آلی، و تعیین غلظت فلزات سنگین با استفاده از ICP بر روی نمونه‌ها انجام گرفت. بیش­ترین مقادیر غلظت آهن (ppm45000)، آلومینیوم (ppm74000)، کروم (ppm 78/142)، کبالت (ppm 67/33) و سرب (ppm 70/56) در رودخانه رامسر ، آرسنیک (ppm 45/18) و روی (ppm 3/110) در رودخانه گرگانرود، نیکل (ppm 60) در رودخانه قره‌سو و مس (ppm 63/52) در سفیدرود مشاهده گردید. همچنین کم­ترین میزان تمرکز عناصر در مغزه خلیج گرگان (K5) و عمق cm 85 با سن تقریبی1400 سال به­دست آمد که به‌عنوان مقدار زمینه استفاده شد. بر اساس شاخص درجه آلودگی (Cd) سه رودخانه بابلرود، چشمه کیله و سردآبرود در محدوده درجه آلودگی متوسط و رودخانه‌های گرگانرود، قره‌سو، تجن، رامسر و سفیدرود در محدوده آلودگی قابل‌توجه رده‌بندی شدند. همچنین بر مبنای شاخص درجه آلودگی اصلاح‌شده (mCd)، همه رودخانه‌ها در محدوده درجه آلودگی پایین تا متوسط قرار داشتند و ﺿﺮﻳﺐ ﺑﺎر آﻟﻮدﮔﻲ (PLI) در بیش­تر ایستگاه‌ها در محدوده بیش­تر از 1 (کمی آلوده تا آلوده) را نشان داد. به لحاظ سلامت بوم­شناسی (RI) رودخانه‌ها در محدوده کم ریسک قرار می‌گیرند. شاخص غنی‌شدگی (EF) در رسوبات بخش‌های دهانه‌ای نشان داد رودخانه‌های فوق احتمالاً تحت تأثیر عوامل مختلف از جمله زمین‌شناسی منطقه، شرایط آب‌وهوایی و عوامل انسانی غنی شده‌اند و آلودگی متوسط تا شدید دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Heavy Metal Concentrations in Estuarine Sediments of Important Rivers in The Southern Part of The Caspian Sea

نویسندگان [English]

  • Hossein Bagheri 1
  • Kazem Darvish Bastami 2
1 1Research Lecturer, Department of Marin Sciences, Iranian National Institute for Oceanography and Atmospheric Sciences, Tehran, Iran
2 Research Expert, Department of Marin Sciences, Iranian National Institute for Oceanography and Atmospheric Sciences, Tehran, Iran
چکیده [English]

Introduction: Geochemical studies of sediments of aquatic bodies such as rivers, estuaries and beaches can be an effective step to find the origin and distribution pattern of sediments and associated elements As a result of environmental assessment of pollutants in coastal areas. Rivers are one of the most important sources of dissolved and suspended metals in coastal water River sediments are one of the most important areas for measuring and monitoring the pollution of aquatic ecosystems; Because sediments not only play an important role in the transport of pollutants, they are also potential sources of pollutants in aquatic ecosystems.
Materials and Methods: In this research, to study the geochemistry of important estuarine areas in the southern Caspian Sea basin, In this study, due to the importance of estuarine areas in terms of environment and fish farming and human activities, one core and 24 Surface sediment samples were collected from 8 rivers as Gorganrood, Qarasu, Tajan, Babolrood, Sardabroud, Safarod, Cheshmeh Kileh, Sefidrud, in three points (upstream, river mouth up to 10 meters depth).Grain size analysis, organic matter content and ICP analyses were performed on the samples.
Results: According to grain size analysis, the mean of gravel, sand, silt and clay was 3.59, 52.46, 41.48 and 2.27%, respectively, indicating that the predominant sediment load in river beds is generally sand. The highest concentrations of iron (45000 ppm), aluminum (74000 ppm), chromium (142.78 ppm), cobalt (33.67 ppm) and lead (56.70 ppm) in Ramsar River (Safarood), arsenic (18.45 ppm) and zinc (110.3 ppm) were observed in Gorganrood river, nickel (60 ppm) in Qarahsoo river and copper (52.63 ppm) in Sefidrood. Also, the lowest concentration of elements in the Gorgan Bay core (K5) at depth 85 cm with an approximate age of 1400 years was obtained, which was used as a baseline reference. Based on different pollution indicators, the degree of pollution (Cd) Babolrud, Cheshmeh Kileh and Sardabrud are in the range of moderate pollution and in the Gorganrud, Qarah Su, Tajan, Ramsar and Sefidrud are in the range of significant pollution. According to the modified degree of pollution index, all rivers are classified in the range of low to medium degree of pollution, and (PLI) in most stations showed in the range of more than 1 (slightly polluted to polluted), but ecological risk (RI) were still in the low risk range. The enrichment factor (EF) in the sediments of the estuarine sections showed that the above rivers are probably enriched (Table.1).
Conclusion: One of the factors for the enrichment of these elements can be the geology of the region. The eastern parts of the Caspian Sea include the Gorgan metamorphic complex and due to the igneous nature of these set, contains a large amount of heavy metals. In addition, another origin of the source rock in this part includes fine materials, especially shale, which has a relatively high ability to absorb heavy metals effects to the presence of clay minerals. Likewise in the central and western parts, ultramafic rocks contain large amounts of iron, chromium, nickel, cobalt and manganese, which are eroded by the hot and humid climate of these areas. According to the sediment quality guidelines of Canada and the United States, it was observed that the amount of these elements in the sediments of the region is less than dangerous and harmful but continuous monitoring of pollution is essential for future decisions and decision-making.

کلیدواژه‌ها [English]

  • Pollution
  • River
  • sediments
  • Caspian Sea
Abadi, M., Zamani A. and Perizanganeh Khosravi, H. (2019). Investigation of heavy metal concentrations in the sediments of four important rivers of south Caspian Sea. Scientific J. Wetland Ecobiol., 40, 67-82.
Abrantes, A., Pinto, F. and Moreira, M. (1999). Ecology of polychaete nereis diversicolor population dynamics, production and oogenic cycle. Acta Oceanol., 20(4), 267–283.
Abrahim, G. M. S. and Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Estuarine, Coast. Shelf Sci., 136, 227–238.
Adamo, P., Arienzo, M., Imperato, M., Naimo, D., Nardi, G. and Stanzione, D. (2005). Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere 61, 800–809.
Ahdy, H. H. and Khaled, A. (2009). Heavy metals contamination in sediments of the western part of Egyptian mediterranean Sea. Australian J. Basic Appl. Sci., 3(4), 3330-3336.
Bagheri, H., Mahmodi Gharaei, M. H. and Mossavi Harami, R. (2015). Study of arsenic distribution in sediments of the southeastern Caspian Sea. Int. J. Basic Appl. Sci., 4(1), 57-65.
Bagheri, H., Mahmodi Gharaei, M. H., Mossavi Harami, R. and Khanebad M. (2019). Trace metal environmental contamination records in core sediments of Gorgan Bay in southeast of Caspian Sea. Appl. Ecol. Environ. Res., 17(4), 9547-9559.
Bastami, K., Bagheri, H., Haghparast, S., Soltani, F. and Hamzehpoor, A. (2014). Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Marine Pollut. Bull., 81, 262–267.
Bastami, K., Neyestani, M., Raeisi, H., Shafeian, E., Baniamam, M., Shirzadi, A. and Esmaeilzadeh., M. (2018). Bioavailability and geochemical speciation of phosphorus in surface sediments of the Southern Caspian Sea. Marine Pollut. Bull., 126, 51-57.
Chen, F. H., Chen, J. H., Holmes, J., Boomer, I., Austin, P., Gates, J. B., Wang, N. L., Brooks, S. J and Zhang, J. W. (2010). Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quarter. Sci. Rev., 29, 1055–1068.
Darvishzadeh, A. (2003). Geology of Iran. 5th Edition, Amirkabir Publication, Tehran [In Persian].
De Mora, S., Sheikholeslami, M. R., Wyse, E., Azemard, S. and Cassi, R. (2004). An assessment of metalcontamination in coastal sediments of the Caspian Sea. Marine Pollut. Bull., 48(1), 61-77
Daesslé, L. W., Rendón–Márquez, G., Camacho–Ibar, V. F., Gutiérrez–Galindo, E. A., Shumilin, E. and Ortiz–Campos, E. (2009). Geochemistry of modern sediments from San Quintín coastal lagoon, Baja California: Implication for provenance. Revista Mexicana de Ciencias Geológicas, 26, (1): 117-132.
 Duodu, G., Goonetilleke, A. and Ayoko, G. (2017). Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australian Marine Pollut. Bull., 117(1-2), 523-531.
Faure, G. (1992). Principles and applications of inorganic geochemistry, John willey.
Ghanbarpour, M. R., Goorzadi, M. and Vahabzade, G., (2013). Spatial variability of heavy metals in surficial sediments: Tajan River Watershed, Iran. Sustain. Water Qual. Ecol., 1, 48-58.
Hakanson, L. (1980). An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res., 14, 975–1001.
Hamzeh, M. A., Mahmudy Gharaie, M. H., Alizadeh Ketek Lahijani, H., Djamali, M., Moussavi Harami, R. Naderi Beni, A. (2015). Holocene hydrological changes in SE Iran, a key region between Indian Summer Monsoon and Mediterranean winter precipitation zones, as revealed from a lacustrine sequence from Lake Hamoun. Quarter. Int., 408, 25-39.
Herve, R. P., Andriamalala, R., Yves, M., Marcellin, R., Christine R. and Andriamandimbisoa N. (2010). Assessment of heavy metals concentrations in coastal sediments in north-western cities of Madagascar. Environ. Sci. Technol., 4(2), 51-60.
Karbassi, A. R. and Shankar, R. (2005). Geochemistry of two sediment cores from the west coast of India. Int. J. Environ. Sci. Tech., 1(4), 307-316.
Kim, K. T., Ra, K., Kim, E. S., Yim, U. H. and Kim, J. K. (2011). Distribution of heavy metals in the surface sediments of the Han River and its estuary, Korea. J. Coast. Res., 64, 903-907.
Lahijani, H. (2003). Introduction to the Caspian Sea, Nourbakhsh Publications. Tehran [In Persian].
Long, E. R., MacDonald, D. D., Smith, S. L. and Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage. 19, 18–97.
Malvandi, A. (2017). Public health risks associated with low concentration of food-borne toxins. J. Blood Lymph., 7 (4), 1.
Maghsoudi, A., Vanai, M. and Yazdi, M., (2015). Heavy metals and study of enrichment and geochemical intensity indices in Nekarood river, Quarter. J. Earth Sci., 24, 167-174 [ In Persian].
Sarkar, B. (2002). Heavy metals in the environment. Marcel Dekker, New York.
Shajan, K. P. (2001). Geochemistry of bottom sediments from a river-estuary-shelf mixing zone on the tropical southwest coast of India. Bull. Geol. Surv. Japan, 52(8), 371-382.
Sinderman, C. (2005). Coastal Pollution. Taylor & Francis Pub.
Sutherland, R. A. (2000). Bed sediment associated trace metals in an urban stream, Oahu. Hawaii. Environ. Geol., 39, 611–627.
Terziev, S. F. (1992). Hydrometeorology and hydrochemistry of Seas. Hydrometeorologycal Conditions, Gidrometeoizdat, Leningrad, 6.1.
Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H. and Yu, L. (2009). Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ. Pollut., 157(5), 1533-1543.