نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه زمین شناسی محیطی، پژوهشکده علوم پایه کاربردی جهاد دانشگاهی، تهران، ایران

2 استادیار، گروه زمین‌شناسی محیطی، پژوهشکده علوم پایه کاربردی جهاد دانشگاهی، تهران، ایران

3 کارشناس ارشد مهندسی محیط زیست، شرکت پالایش نفت تهران

4 کارشناس ارشد، گروه زمین شناسی محیطی، پژوهشکده علوم پایه کاربردی جهاد دانشگاهی، تهران، ایران

5 کارشناس برق الکترونیک، شرکت پالایش نفت تهران، تهران، ایران

چکیده

با توجه به حجم بالای فعالیت‌های نفتی، احتمال بروز آلودگی­های نفتی آب زیرزمینی وجود دارد که نیازمند منشأیابی، پاک‌سازی، مدیریت و پایش گسترده می­باشند. در محدوده صنعتی ری با وجود آلودگی نفتی گسترده، تا پیش از پژوهش حاضر منشأیابی آلودگی نفتی آب زیرزمینی صورت نگرفته است و مطالعات قبلی تنها به مطالعات اکتشافی و استحصال مواد نفتی محدودشده بود. هدف از پژوهش حاضر، تعیین و تفکیک منشأهای نشت مواد نفتی به آب زیرزمینی در محدوده صنعتی ری بود. برای این منظور زمین­شناسی زیرسطحی و هیدروژئولوژی منطقه با حفر چاه­های اکتشافی و تحلیل اطلاعات بررسی‌شده، و مدل مفهومی منطقه تهیه شد. سپس از تمامی منابع بالقوه آلاینده و چاه­های پایش موجود در منطقه نمونه­برداری شده و آنالیزهای تقطیر و کروماتوگرافی گازی- طیف­نگاری جرمی و تحلیل­های هیدروژئولوژیکی انجام شد. بر اساس نتایج حاصل از این پژوهش، 5 هاله اصلی آلودگی در منطقه مشخص گردید. یافته­های پژوهش نشان می­دهد درصورتی‌که آلودگی از یک نوع فرآورده باشد، روش تقطیر سریع‌ترین و کم‌هزینه‌ترین روش شناسایی و تفکیک هاله­های آلودگی می­باشد. زمانی­که آلودگی، تلفیقی از انواع ترکیبات باشد و یا تعداد منشأهای آلودگی زیاد باشد، استفاده از تحلیل نتایج کروماتوگرافی گازی-جرمی و نسبت­های مختلف ترکیبات به­همراه تحلیل­های هیدروژئولوژیکی موردنیاز می­باشد. عمده نشتی­های منطقه موردمطالعه از خطوط انتقال فرآورده‌های نفتی مدفون در زیرزمین بود که معمولاً فرآورده­های نفتی را با فشار بالا منتقل می­کنند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Separation of Oil Pollution Plumes of Groundwater in The Industrial Area of South Tehran

نویسندگان [English]

  • Kamal Khodaei 1
  • Hadi Tabani 2
  • Aliakbar Shahsavari 1
  • Seyed Hossein Qureshi 3
  • Zahra Boosalik 1
  • Benyamin Rezazadeh 4
  • Majid Mokhtari 5

1 Assist. Professor, Department of Environmental Geology, Research Institute of Applied Sciences, ACECR, Tehran, Iran

2 Assist. Professor, Department of Environmental Geology, Research Institute of Applied Sciences, ACECR, Tehran, Iran

3 M. Sc. Environmental Engineering, Tehran Oil Refining Company, Tehran, Iran

4 M.Sc., Department of Environmental Geology, Research Institute of Applied Sciences, ACECR, Tehran, Iran

5 Electrical Electronics Expert, Tehran Oil Refining Company, Tehran, Iran

چکیده [English]

Due to the high volume of oil activities, there is a possibility of groundwater oil pollution, which requires extensive source identification, remediation, management and monitoring. In Rey industrial area, despite widespread oil pollution, the source identification of groundwater oil pollution has not been carried out before the present study, and previous studies were limited to exploration and extraction of petroleum products. The purpose of this study was to determine and separate the sources of oil spills to groundwater in the Rey industrial area. For this purpose, subsurface geology and hydrogeology of the region were studied by digging exploratory wells and data analyzing, and a conceptual model of the region was prepared. Then, all potential sources of pollutants and monitoring wells in the area were sampled and distillation and gas chromatography-mass spectrometry and hydrogeological analyzes were performed. Based on the results of this study, five main contaminated plumes were identified. The research results show that if the contamination is single product, the distillation method is the fastest and cheaper method of identifying and separating the plumes of contamination. When the contamination is a combination of different compounds, the use of gas-mass chromatography analysis and different ratios of the compounds along with hydrogeological analyzes is required. The main leaks in the study area were from the transmission lines of petroleum products buried in the underground, which usually transport petroleum products with high pressure.

کلیدواژه‌ها [English]

  • Groundwater
  • Contamination Plumes Separation
  • Distillation Analysis
  • GC-MS
  • Oil Pollution
Adamo, M., Carolis, G. D., Pasquale, V. D. and Pasquariello, G. (2009). Detection and tracking of oil slicks on sun-glittered visible and near infrared satellite imagery. Int. J. Remote Sens., 30(24), 6403–6427. http://dx.doi.org/10.1080/01431160902865772.
Ahad, J. M. E., Pakdel, H., Savard, M. M., Simard M. C. and Smirnoff, A. (2012). Extraction, separation, and intramolecular carbon isotope characterization of Athabasca oil sands acids in environmental samples. Anal. Chem., 84, 10419−10425.
Ahmadi, A. and Hosseini Alhashimi, A. (2018). Investigation and determination of the amount of polycyclic aromatic hydrocarbons in the surface soil of Masjed Soleiman oil and gas factories (Case study: Haft Shahidan Exploitation and Desalination Plant). J. Environ. Sci. Technol., 20(2),17-28 [In Persian].
Arques-Orobon, F. J., Nuñez, N., Vazquez, M. and Gonzalez-Posadas, V. (2016). Functional analysis in long-term operation of high power UV-LEDS in continuous fluoro-sensing systems for hydrocarbon pollution. Sensor, 16(3), 293. Doi: 10.3390/s16030293
Arques-Orobon, F. J., Prieto-Castrillo, F., Nuñez, N. and Gonzalez-Posadas, V. (2020). Processing fluorescence spectra for pollutants detection systems in inland waters. Sensor., 20, 3102. Doi:10.3390/s20113102.
Bayona, J. M., Domínguez, C. and Albaigés, J. (2015) Analytical developments for oil spill fingerprinting. Trend. Environ. Analyt. Chem., 5, 26-34. Doi: 10.1016/j.teac.2015.01.004.
Brekke, C. and Solberg, A. H. S. (2005). Oil spill detection by satellite remote sensing. Remote Sens. Environ. 95, 1–13.
Brunswick, P., Shang, D., Frank, R. A, Aggelen, G. V., Kim, M. and Hewitt, L. M. (2020). Diagnostic ratio analysis: a new concept for the tracking of oil sands process-affected water naphthenic acids and other water-soluble organics in surface waters. Environ. Sci. Technol., 54(4), 2228-2243. Doi: 10.1021/acs.est.9b05172.
Chen, H-Y., Teng, Y-G. and Wang J-S. (2012). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Sci. Total Environ., 414, 293–300.
Chua, C. C., Brunswick, P., Kwok, H., Yan, J., Cuthbertson, D., Aggelen, G. V., Helbing, C. C. and Shang D. (2020). Enhanced analysis of weathered crude oils by gas chromatography-flame ionization detection, gas chromatography-mass spectrometry diagnostic ratios, and multivariate statistics. J. Chromat. A., 1634 (20), 461689. https://doi.org/10.1016/j.chroma.2020.461689
Ebrahimi, S., Shaygan, J., Malakouti, M. and Akbari, A. (2011). Environmental assessment and valuation of some important indicators of oil pollution in the lands of Sarkhon gas refinery in Bandar Abbas. Environ. Quart., 37(57), 9-18 [In Persian].
Fernández-Varela, R., Gómez-Carracedo, M. P., Ballabio, D. and Andrade, J. M. (2016).  The use of diagnostic ratios, biomarkers and 3-way Kohonen neural networks to monitor the temporal evolution of oil spills. Marin. Pollut. Bull., 96(1-2), 313-320. Doi: 10.1016/j.marpolbul.2015.04.053.
Gibson, J. J., Birks, S. J., Moncur, M., Yi, Y., Tattrie, K., Jasechko, S., Richardson, K. and Eby, P. (2011). Isotopic and geochemical tracers for fingerprinting process-affected waters in the oil sands industry: A pilot study; oil sands research and information network, University of Alberta, School of Energy and the Environment, Edmonton, AB, OSRIN Report No. TR-12, p 109.
Ismail, A., Toriman, M. E., Juahir, H., Kassim, A. M., Zain, S. M., Ahmad, W. K. W., Fah, W. K., Retnam, A., Zali, M. A., Mokhtar, M. and Yusri, M. A. (2016). Chemometric techniques in oil classification from oil spill fingerprinting. Marin. Pollut. Bull., 111(1-2), 339-346. Doi: 10.1016/j.marpolbul.2016.06.089.
Lebanov, L., Chatterjee, S., Tedone, L., Chapman, S. C. and Linford, M. R. (2020). Comprehensive characterisation of ylang-ylang essential oils according to distillation time, origin, and chemical composition using a multivariate approach applied to average mass spectra and segmented average mass spectral data. J. Chromat. A., 1618(10), 460853.
Mohler, R. E., Ahn, S., O’Reilly, K. and Zemo, D. A. (2020). Towards comprehensive analysis of oxygen containing organic compounds in groundwater at a crude oil spill site using GC_GCTOFMS and Orbitrap ESI-MS. Chemosphere, 244, 125504.
Mulabagal, V., Yin, F., John, G. F., Hayworth, S. and Clement, T. P. (2013). Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline. Marin. Pollut. Bull., 70, 147-154.
Neamati Vernosfadarani, M., Riahi Bakhtiari, A., Go, J. and Chou, J. (2014). Distribution pattern and determination of the origin of aromatic polycyclic hydrocarbons in sediments of the southwest coast of the -Caspian Sea: Gilan province. J. Health Environ., 7(3), 315-326 [In Persian].
Riley, B. J., Lennard, C., Fuller, S. and Spikmans, V. (2018). Pyrolysis-GC-MS analysis of crude and heavy fuel oil asphaltenes for application in oil fingerprinting, Environ. Forensic., 19(1), 14–26. Doi: 10.1080/15275922.2017.1408163.
Suppajariyawat, P., de Andrade, A. F. B., Elie, M., Baron, M., & Gonzalez-Rodriguez, J. (2019). The use of chemical composition and additives to classify petrol and diesel using gas chromatography–mass spectrometry and chemometric analysis: a UK study. Open Chem., 17(1), 183-197.
Wang, Z. and Fingas, M. (2003). Fate and identification of spilled oils and petroleum products in the environment by GC-MS and GC-FID. Environ. Forensic., 25, 491–508.
Woodland, W., Lim, R., Motti, C., Irving, P., Wang, J., Payne, M., Junk, P. and Vamvounis, G. (2019). Oil spill source identification using colorimetric detection, Aust. J. Chem., 72, 874–880. Doi:  10.1071/CH19336.
Xiong, W., Bernesky, R., Bechard, R., Michaud, G. and Lang, A. (2014). A tiered approach to distinguish sources of gasoline and diesel spills. Sci. Total Environ., 487, 452-462. Doi: 10.1016/j.scitotenv.2014.04.043.
Ya, M., Wu, Y., Wang, X., Li, Y. and Su, G. (2020). The importance of compound-specific radiocarbon analysis in source identification of polycyclic aromatic hydrocarbons: A critical review. Critic. Rev. Environ. Sci. Technol., 1-42. Doi: 10.1080/10643389.2020.1843305