تخمین بارش روزانه با استفاده از مدل های ترکیبی ANFIS آموزش داده شده توسط روش خوشه بندی میانگین هایc فازی و الگوریتم های تکاملی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی آب، دانشکده مهندسی عمران و نقشه‌برداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

2 کارشناس ارشد، گروه مهندسی آب، دانشکده مهندسی عمران و نقشه‌برداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

امروزه به­دلیل وجود عدم قطعیت بالا در تخمین بارش در مناطق مختلف جغرافیایی، به‌کارگیری روش‌های هوش محاسباتی بر مبنای الگوریتم‌های بهینه‌ساز جهت تخمین دقیق بارش­های روزانه مورد توجه مهندسین آب قرار گرفته است. در پژوهش حاضر، از سیستم تطبیقی فازی عصبی استنتاجی  (ANFIS)به­همراه تبدیل موجک (W) به‌عنوان پیش­پردازشگر داده‌های بارش روزانه  جهت تخمین مقادیر، مورد استفاده قرار گرفت. ساختار مدل ترکیبی W-ANFIS با استفاده از روش خوشه‌بندی میانگین‌های c فازی (FCM) در مرحله آموزش توسعه داده شد. همچنین، ضرایب ثابت توابع عضویت موجود در مدل ANFIS با به‌کارگیری چهار الگوریتم بهینه‌ساز وراثتی (GA)، ازدحام ذرات (PSO)، تکامل تفاضلی (DE) و جامعه مورچگان  (ACO)بهینه شدند. در این پژوهش، آمار بارندگی دوره yr 11 حوضه ازمیر واقع در غرب کشور ترکیه استفاده شد. با به‌کارگیری پنج تأخیر زمانی در آمار بارش روزانه و همچنین تجزیه­شدن هر یک از تأخیرهای زمانی در سه سطح حاصل از تبدیل موجک، هر یک از مدل‌های بهینه W-ANFIS دارای 20 متغیر ورودی شدند. نتایج حاصل از آنالیز آماری مراحل آموزش و آزمایش با استفاده از پارامترهای ریشه میانگین مربعات خطا (RMSE) و خطای مطلق میانگین (MAE) نشان دادند که کاربرد الگوریتم تکامل تفاضلی  در ساختار مدل W-ANFIS با داشتن RMSE و MAE برابر با  22/22 وmm  11/17 در مقایسه با سایر مدل‌های ترکیبی حاصل از PSO (11/28 و mm 11/ 24)، ACO (41/30 و  mm50/26) و GA (11/18 وmm  70/25) از دقت بالایی برخوردار می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Daily Rainfall Estimation using ANFIS Combination Models Trained by Clustering of Fuzzy c-Means and Evolutionary Algorithms

نویسندگان [English]

  • Mohammad Najafzadeh 1
  • Diako Afroozi 2
  • Ali Barzkar 2
1 Assist. Professor, Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran
2 M.Sc. Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

Nowadays, due to the high uncertainty in estimating precipitation in different geographical areas, the use of computational intelligence methods based on optimization algorithms to accurately estimate daily precipitation has been considered by water engineers. In the present study, the combined Adaptive Neuro Fuzzy Inference System and Wavelet transform (W-ANFIS) method was used as a pre-processor for daily rainfall data to estimate precipitation values. The structure of the W-ANFIS hybrid model was developed using the Fuzzy Clustering Means (FCM) method in the training phase. Moreover, constant coefficients of membership functions applied in the ANFIS model were optimized using four optimization algorithms including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and Ant Colony community (ACO). In the present study, rainfall statistics of Izmir basin in the western part of Turkey were used. Through applying five-time delays in daily rainfall statistics as well as decomposing each time delay in the three levels of wavelet transform, each of the W-ANFIS optimal models had twenty input variables. The results of the statistical analysis for both training and testing stages by the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) showed that the application of the DE algorithm into W-ANFIS structure had the best performance (RMSE = 22.22 and MAE = 17.11mm) than other combined models with PSO (RMSE = 28.11 and MAE = 24.11 mm), ACO (RMSE = 30.41 and MAE = 26.50 mm), and GA (RMSE = 25.70 and MAE = 18.11 mm).

کلیدواژه‌ها [English]

  • Adaptive Neuro Fuzzy Inference System
  • Clustering
  • evolutionary algorithms
  • Rainfall estimation
  • wavelet transform
Abbot, J. and Marohasy, J. (2014). Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos. Res., 138, 166-178.
Afsahr, A., Emami Skardi, M. J. and Jeirani, F. (2015). Optimal design of catchments in Watersheds using multi-objective ant colony optimization algorithm and SWAT model. Environ. Sci. Technol., 16(1), 133-148.
Hardwinarto, S., and Aipassa, M., (2015). Rainfall monthly monthly prediction prediction based based on artificial neural network: A case study in Tenggarong Station. East Kalimantan-Indonesia. Procedia Comput. Sci., 59, 142-151.
Hashemi Jowkar, M. (2012). Determination of inflation parameters (inflation percentage and inflation pressure) of swollen soils using adaptive neuro fuzzy inference system (ANFIS). Master Dissertation in soil and foundation mechanical engineering, Graduate University of Advanced Technology, Kerman [In Persian].
Hawangy, R. (2017). Positioning of autonomous robots based on differential evolution algorithm. Electronic Industries., 8(1), 71-84.
He, Z., Wen, X., Liu, H. and Du, J., (2014). A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J. Hydrol., 509, 379-386.
Hoseynipoor, A. (2015). Prediction of short-term load in Kerman region using the combined method of ANFIS-PSO. The Second National Conference on New and Clean Energy Management, Shahid Mofteh Faculty of Engineering, Hamadan University [In Persian].
Keshawarzmehr, M. (2012). Neural networks, fuzzy logic and genetic algorithm composition and application, Nopardazan Press, Tehran [In Persian].
Kisi, O. and Shiri, J. (2011). Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour. Manag. 25(13), 3135-3152.
Kisi, O. and Cimen, M., (2012). Precipitation forecasting using wavelet-support vector machine conjunction model. Eng. Appl. Artif. Intell. 25, 783-792.
Malakmohammady, M., and Nasrollahi, M. (2016). Comparison of the efficiency of adaptive neuro fuzzy inference system particle swarm optimization (ANFIS-PSO) and artificial neural network (ANN) in demand forecasting (Case study of Novin Ghateh Company). 3rd International Conference on Management, Accounting and Knowledge-Based Economics with Emphasis on Resistance Economics, Allameh Majlisi University, Tehran [In Persian].
Naeeni, S. (2011). Comparison of two reduction clustering algorithms and fuzzy C-Means in constructing a fuzzy model predicting the Geometric dimensions of the overflow scouring hole downstream of the ski jump. 10th Iranian Hydraulic Conference, University of Guilan, Rasht, Iran [In Persian].
Nikam, V. and Gupta, K. (2013). SVM-based model for short-term rainfall forecasts at a local scale in the Mumbai urban area, India. J. Hydrol. Eng., 19(5), 1048-1052.
Phukoetphim, P., Shamseldin, A. Y. and Adams, K. (2016). Multimodel approach using neural networks and symbolic regression to combine the estimated discharges of rainfall-runoff models. J. Hydrol. Eng., 21(8), 04016022.
Sarzaeim, P., Bozorg-Haddad, O., Bozorgi, A. and Loáiciga, H. A. (2017). Runoff projection projection under climate climate change change conditions conditions with data-mining methodsmethods. J. Irrig. Drain. Eng., 143(8), 04017026.
Sehgal, V., Sahay, R. R. and Chatterjee, C. (2014). Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models. Water. Resour. Manag., 28(6), 1733-1749.
Tropsha A., Gramatica P., and Gombar V. K. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci., 22(1), 67-77.