بررسی اثرات انتشار گازهای گلخانه ای بر عرضه و تقاضای آب آبیاری در حوزه های آبخیز استان قزوین

نوع مقاله: مقاله اصلی

نویسنده

دانشجوی دکتری اقتصاد کشاورزی دانشگاه پیام نور تهران، محقق مرکز تحقیقات کشاورزی و منابع طبیعی استان قزوین و عضو بنیاد ملی نخبگان

چکیده

انتشار روزافزون گازهای گلخانه‌ای ازجمله عواملی است که طی دهه‌های اخیر بر سرعت به‌وجود آمدن پدیده تغییر اقلیم تأثیر گذاشته است. در مطالعه حاضر ابتدا با بهره‌گیری از داده‌های سری زمانی سال‌های 1392-1385 و مدل شبیه‌سازی RCM-PRECIS اثر انتشار گازهای گلخانه‌ای بر متغیرهای اقلیمی دما و بارش تحت سناریوهای مختلف در حوزه‌های آبخیز استان قزوین بررسی شد. سپس، جهت بررسی میزان اثرگذاری متغیرهای دما و بارش بر عملکرد محصولات منتخب از روش حداقل مربعات معمولی (OLS) و تحلیل‌های رگرسیونی استفاده شد. در ادامه با لحاظ نمودن نتایج تحلیل رگرسیونی در مدل برنامه‌ریزی ریاضی مثبت (PMP)، میزان تغییرات به‌وجود آمده در عرضه و تقاضای آب آبیاری و تولیدات بخش کشاورزی در حوزه‌های آبخیز استان قزوین بررسی شد. نتایج نشان داد که انتشار گازهای گلخانه‌ای تحت سناریوهای A، B و C، متغیرهای اقلیمی دما و بارش را به میزان 43/0 تا 27/1 درجه سلیسیوس و 1/14- تا 31/1 میلی‌متر متأثر می‌سازد. این امر عملکرد محصولات منتخب را در سطح حوزه‌های آبخیز استان قزوین تغییر می‌دهد. با تغییر در عملکرد، سطح زیر کشت محصولات زراعی از 51/10- تا 17/3 درصد، میزان عرضه آب آبیاری از 4/10- تا 64/1 درصد و میزان تقاضای آب آبیاری از 60/1 تا 35/7 درصد تغییر می‌کند. همچنین، نتایج نشان داد که بیشترین و کمترین کاهش شکاف بین عرضه و تقاضای آب آبیاری در حوزه‌های آبخیز خررود و شاهرود به میزان 20/9 و 82/1 درصد حاصل می‌شود. با برآورد شکاف بین عرضه و تقاضای آب آبیاری می‌توان تصمیمات درخور و مناسبی را جهت پایداری منابع آب در سطح حوزه‌های آبخیز استان قزوین اتخاذ نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effects of Greenhouse Gases Emission on Supply and Demand of Irrigation Water in Watersheds of Qazvin Province

نویسنده [English]

  • Abozar Parhizkari
PhD Scholar, Department of Agricultural Economics, University of PNU, Tehran; Researcher of Agriculture and Natural Resources Research Center of Qazvin Province; Member of the National Foundation of Elites
چکیده [English]

Increasing the emissions of greenhouse gases is among the factors affected the speed of occurrence of
climate change during recent decades. In present study, first using time series data of 2006-2012 and
RCM-PRECIS simulation model, the impacts of greenhouse gases emission on climatic variables of
temperature and precipitation was investigated under different scenarios in watersheds of Qazvin
Province. Then, the ordinary least squares (OLS) method and regression analysis were used to assess the
impacts of climatic variables of temperature and precipitation on the selected products yield. Afterwards,
considering the results of regression analysis in positive mathematical programing (PMP) model, the
amount of the created variation in supply and demand of irrigation water and agricultural output in
watersheds of Qazvin Province was investigated. The results showed that emission of greenhouse gases
under scenarios A, B, and C affects the climatic variables of temperature and precipitation about 0.43 to
1.27 °C and -14.1 to 1.31 mm respectively. This case changes the selected products yield in the surface of
each river basin of Qazvin Province. Change in yield affects acreage of agricultural crops by about -10.51
to 3.17 percent, the amount of irrigation water supply by about -10.4 to 1.64 percent, and the amount of
irrigation water demand by about 1.60 to 7.35 percent. Moreover, the results showed that maximum and
minimum decrease in the gap between supply and demand of irrigation water happens in Kharroud and
Shahroud watersheds by about 9.20 and 1.82 percent respectively. With estimating the gap between
demand and supply of irrigation water, one can adopt the appropriate decisions for sustainable water
resources in watersheds of Qazvin Province.

کلیدواژه‌ها [English]

  • Positive Mathematical Programing
  • Water Demand
  • Greenhouse Gases
  • general circulation model
  • Qazvin
Ababayi B., Sohrabi T., Mirzayi F., Rezaverdi V. and Karimi B. (2011). Effects of climate change on wheat yield and the risk analysis of it (Case study: Region of Esfahan Roddasht). J. Knowledge Soil Water, 1(20), 136-150 [In Persian].
 
Abrishami H. (2003). Principles of econometrics. 3rd Edition, No: 11-43, published by Tehran University, Tehran, Iran [In Persian].
 
Alizade A. and Kamali Q. (2005). Assessment effect of climate change on increasing water use in Mashhad plain. J. Geogr. Res., 17(2), 189-201 [In Persian].
 
Angel J. (2008). Potential impacts of climate change on water availability. Illinois State Water Survey, Institute of Natural Resource Sustainability, 12: 397-409.
 
Cacho O., Hean R., Ginoga K. and Wise R. (2008). Economic potential of land-use change and forestry for carbon sequestration and poverty reduction. Part 1 Australian Centre for International Agricultural Research, Canberra, No: 33-67.
 
Connor J., Kirby M., Schwabe K., Liukasiewics A. and Kaczan D. (2008). Impacts of reduced water availability on lower Murray irrigation, Australia. Socio-Economics and the Environment in Discussion, CSIRO working paper series ISSN: 1834-5638.
 
Department of Energy. (2014). Greenhouse gas emissions and these effects on air and climate system in country, Environmental Protection Agency, 37 pp [In Persian].
 
Falsafizade N. and Sabouhi M. (2011). Assessment effect the of climate change on products of agriculture sector. J. Agri. Econom. Develop., 26(4), 272-286 [In Persian].
 
Georgi F. and Hewitson B. (2001). Regional climate information evaluation and projections, in climate change. Quart. J. Royal Meteorol. Soci., 121, 1413–1449.
 
He L., Horbulyk T. M., Ali M. K., Roy D. G. L. and Klein K. K. (2012). Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta. Agri. Water Manag., 104, 2131.
 
Howitt R. E., Medellin-Azuara J., MacEwan D. and Lund R. (2012). Calibrating disaggregate economic models of agricultural production and water management. Sci. Environ. Model. Software, 38, 244-258.
 
Islam S., Rehman N. and Sheikh M. M. (2009). Future change in the frequency of warm and cold spells over Pakistan by the PRECIS regional climate model. Climate Change, 94, 35–45.
 
Jones R. G., Noguer M., Hassell D. C., Hudson D., Wilson S. S., Jenkins G. J. and Mitchell J. F. B. (2004). Generating high resolution climate change scenarios using PRECIS; Met Office Hadley Centre: Exeter, UK, 64-79.
 
 Jung I. W. and Chang H. (2013). Assessment of future runoff trends under multiple climate change scenarios in the Willamette River Basin, Oregon, USA. J. Hydrol., 16, 63-87.
 
Marco A. and Tanssen L. (2004). Optimization of a nonlinear dynamical system for global climate change. European J. Operat. Res., (2), 322-335.
 
Medellan-Azuara J., Harou J. J. and Howitt R. E. (2011). Predicting farmer responses to water pricing, rationing and subsidies assuming profit maximizing investment in irrigation technology. Sci. Agri. Water Manag., 108, 73–82.
 
Mohammadi Ghaleni M., Ebrahimi K. and Araghinejad Sh. (2015). Evaluation impact of drought, extraction and construction of dam on the groundwater drop-case study Saveh aquifer. J. Water Soil Conser., 19(4), 189- 203 [In Persian].
 
Noferesti M. (2008). Unit root and co-integration in econometrics. Resa Publishing, [In Persian].
 
Parhizkari A. (2013). Determination economic value of irrigation water and farmer’s response to price and non-price policies in Qazvin province, MSc  Dissertation, University of Zabol, Zabol, Iran, 130 pp [In Persian].
 
Parhizkari A. and Sabuhi M. (2013). Simulation farmers’ response to reducing available water policy. J. Water Irrig. Manag., 3(2), 59-74 [In Persian].
 
Parhizkari A., Sabuhi M. and Ziaee S. (2013). Simulation water market and analysis of the effects irrigation water sharing policy on cropping patterns under conditions of water shortage. J. Agri. Econom. Develop., 27(3), 242-252 [In Persian].
 
Poormohammadi S. and Malekinezhad H. (2014). Classification of homogeneous climatic regions under the impact of climate change and greenhouse gas emissions scenarios using L-moments technique in Iran. J. Watershed Manag. Res., 4(8), 58- 76 [In Persian].
 
Sabouhi M. and Parhizkari A. (2013). Analysis of the economic and welfare impacts of establishment irrigation water market in Qazvin Province. J. Agri. Econom. Develop., 27(4), 338-350 [In Persian].
 
Sanikhani H., Dinpajoh Y., Pouryusef S., Ghavidel S. Z. and Solati B. (2013). The impacts of climate change on runoff in watersheds (case study: Ajichay Watershed in East Azerbaijan province, Iran). J. Water Soil, 27(6), 1225-1234 [In Persian].
 
Sanchis F. M. and Feijoo-Bello M. L. (2009). Climate change and its marginalizing effect on agriculture. Ecol. Econom., 68(3), 896-904.
 
Shakiba A., Bahak B. and Monorian Z. (2009). The effects of precipitation changes on surface water flows and permanent in Tehran province, case study: Jajroud River. J. Geogr. Perspec., 3(7), 111-134 [In Persian].
 
Srikanthan R. and McMahon T. A. (2001). Stochastic generation of annual, monthly and daily climate data. A Review Hydrol. Earth Sys. Sci., 5(4), 653-670.
 
Vaseghi A. and Esmaili A. (2008). Effect of climate change on agriculture sector in Iran: Ricardian method (case study: wheat). Technol. Agri. Nat. Resour. Sci., 45(7), 685-696. [In Persian].
 
Zmudzka E. (2004). The climatic background of agricultural production in Poland 1951-2000. Miscellanea Geogr., 11(2), 127-137.