مدل سازی زمین آماری تغییرات مکانی کیفیت آب های زیرزمینی با استفاده از GIS و مدل ویلکوکس (مطالعه موردی بخش های مرکزی و کنارک، چابهار)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد مهندسی سنجش از دور، دانشگاه تحصیلات تکمیلی صنعتی فناوری پیشرفته کرمان، ایران

2 استادیار، گروه مهندسی نقشه برداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته،کرمان، ایران

10.22034/jewe.2020.255847.1460

چکیده

مصرف آب با کیفیت نامطلوب برای امور کشاورزی، تأثیر منفی بر روی رشد گیاهان و خصوصیات فیزیکی خاک می‌گذارد. هدف از پژوهش پیش رو تعیین تغییرات مکانی کیفیت آب زیرزمینی جهت کشاورزی در بخش‌های مرکزی و کنارک شهرستان چابهار بود. بدین منظور بعد از جمع‌آوری آمار دو پارامتر EC و SAR از 40 حلقه چاه موجود در منطقه مطالعاتی در سال 1398، با استفاده از روش‌های معکوس فاصله، چندجمله‌ای عام، چندجمله‌ای محلی، توابع پایه شعاعی و کریجینگ با سمی واریوگرام­های دایره‌ای، کروی، نمایی، گوسین و معادلات درجه‌دو، مناسب‌ترین روش جهت درون‌یابی با توجه به معیارهای ارزیـابی مجـذور میـانگین مربعـات خطـا (RMSE) و ضریب همبستگی (R2) انتخاب گردید. که روش درون‌یابی کریجینگ با مدل واریوگرامی گوسین با 85/13RMSE= و 77/0 R2=  به‌عنوان مناسب‌ترین روش‌ جهت درون‌یابی پارامتر  SAR و روش درون‌یابی کریجینگ با مدل واریوگرامی کروی با 89/797RMSE= و 68/0R2=   به‌عنوان مناسب‌ترین روش‌ جهت درون‌یابی پارامتر EC در منطقه مورد مطالعه تعیین شدند. در ادامه نقشه کیفیت آب زیرزمینی برای مصارف کشاورزی و آبیاری بر مبنای روش ویل­کاکس با استفاده از  نقشه تغییرات مکانی دو پارامتر EC و SAR تهیه شد. نتایج نشان داد که حدود 10% از آب‌های زیرزمینی به‌عنوان کیفیت خوب و 51% به‌عنوان کیفیت متوسط و 16% به‌عنوان کیفیت نامناسب و حدود %23 به‌عنوان آب غیرقابل استفاده را در محدوده مطالعاتی تشکیل دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Geostatistical Modelling of Spatial Changes in Groundwater Quality Using GIS and Wilcox Model (Case Study: Central and Kenark Districts, Chabahar)

نویسندگان [English]

  • Saeed Mahmodizadeh 1
  • Ali Esmaeily 2
1 M.Sc. Alumni, Department of Remote Sensing Engineering, Faculty of Surveying, University of Industrial and Technological Advanced Studies, Kerman, Iran
2 Assist. Professor, Department of Surveying Engineering, Faculty of Surveying, University of Industrial and Technological Advanced Studies, Kerman, Iran
چکیده [English]

Using unsuitable quality water for agricultural purposes has  negative consequences on plant growth and the soil physical properties. The aim of this study was to investigate the spatial changes in ground water quality with agricultural applicability in central Chabahar and Kenark Distircts. For this purpose, we first performed interpolation for EC and SAR parameters from 40 wells in the study area in 2019. Then we employed  inverse distance weighting , global polynomial, local polynomial, radial basis function and kriging with circular, spherical, exponential, gaussian, as well as quadratic equation semivariograms; the most suitable method for interpolation was selected baed on the Root Mean Square Error (RMSE) and coefficient of determination (R2) criteria. The research found that kriging interpolation method with a Gaussian variogram having RSME=13.85 and R2=0.77 was the most suitable methods for interolating with the SAR paramete and the kriging interpolation method with as spherical variogram having RSME=797.89 and R2=0.68 was considered as the most suitable methods for interpolating EC. Then, based on Wilcox method, the groundwater quality map for agricultural and irrigation uses was prepared using the spatial variation map of two parameters, EC and SAR. The results showed that the quality classification of the groundwater in the study area was: about 10% as good, 51% as fair, 16% as poor, and about 23% as unusable water.

کلیدواژه‌ها [English]

  • Agricultural
  • Groundwater
  • Interpolation
  • Kriging
Abbasnia, A., Yousefi, N., Mahvi, A., Nabizadeh, R., Radfard, M., Yousefi, M. and Alimohammadi, M. (2019). Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human Ecol. Risk Assess. Int. J., 25(4), 988-1005.
Alizadeh, A. (2015). Principles of applied hydrology. Astan Quds Razavi Publishing. 320 pp [In Persian].
Almodaresi, S. A., Mohammadrezaei, M., Dolatabadi, M. and Nateghi, M. R. (2019). Qualitative analysis of groundwater quality indicators based on Schuler and Wilcox diagrams: IDW and Kriging Models. J. Environ. Health Sustain. Dev., 4(4), 903-912.
Azare, A., Saravi, M., Salajegheh, S. and Jafari, S. M. (2012). Temporal and spatial change of groundwater quality in Shahr-e-Babak plain for agricultural the base Wilcox and FAO. J. Elixir Pollution., 47, 9029- 9034 [In Persian].
Balandeh, N. and Ahmadi, A. (2013). Zoning of the groundwater-level and salinity using geostatistic. Int. J. Agri. Res. Rev. 3(1), 109-112.
Chung, S., Venkatramanan, S. and Kim, T. (2014). Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea. Environ. Develop.  Sustain., 17(3), 423-41.
Delbari, M. Afrasiab, P. and Miremadi, S. R. (2011). Spatio-temporal variability analysis of groundwater salinity and depth (case study: Mazandaran province). Iran. J. lrrig. Drain., 3(4), 359-374 [In Persian].
Eskandari Damaneh, H., Zehtabian, G., Salajegheh, A. Ghorbani, M. and Khosravi, H. (2018). Assessing the effect of land use changes on groundwater quality and quantity (Case study: west basin of Jazmoryan wetland). J. Range Watershed Manag., 71(3), 563-578 [In Persian].
Fan, J. and Gibels, I. (1996). Local polynomial modelling and its applications. Chapman & Hall. Londan. Water Resources Bulletin. 998-1004 pp.
Fetouani, S., Sbaa, M., Vanclooster, M. and Bendra, B. (2008). Assessing groundwater quality in the irrigated plain of Triffa (North-east Morocco). J. Agri. Water Manage., 95(2), 133-142.
Feizi, Z., Keshtkar, A. and Afzali, A. (2019). Using geostatistical and deterministic modelling to identify spatial variability of groundwater quality. Desert., 24(1), 143-151 [In Persian].
Feng, W., Qian, H., Xu, P. and Hou, K. (2020). Hydrochemical characteristic of groundwater and its impact on crop yields in the Baojixia irrigation area, China. Water, 12(5), 1443.
Gong, G., Mattevada, S. and O’Bryant, S. E. (2014). Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ. Res., 130, 59-69.
Hassany Pak, A. (2013). Geostatistics, Tehran University Press. 14 pp [In Persian].
Honarbakhsh, A., Azma, A., Nikseresht, F., Mousazadeh, M., Eftekhari, M. and Ostovari, Y. (2019). Hydro-chemical assessment and GIS-mapping of groundwater quality parameters in semi-arid regions. J. Water Supp. Res. Technol. Aqua., 68 (7), 509-522.
Jafari, R. and Bakhshandehmehr, L. (2014). Analyzing the spatial variations of groundwater salinity and alkalinity in Isfahan Province using geostatistics. J. Water Soil Sci., 18 (68), 183-195 [In Persian].
Karami, S., Madani, H. and Katibeh, H. (2018). Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches. Appl. Water Sci., 8, 23-36 [In Persian].
Kawo, N. S. and Karuppannan, S. (2018). Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. J. Africa. Earth Sci., 147, 300-311.
Khazaei, S. H., Abbasitabar, H. and Taghizadeh, M. R. (2011). Spatial distribution of nitrate contamination in groundwater using geostatistic in Fars Province (Case study: Siakh Darengoun Area). J. Nat. Environ., 64(3), 267-279 [In Persian].
Li, P., Wu, J., Tian, R., He, S. He, X.,  Xue, C. and Zhang, K. (2018). Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China. Mine Water Environ., 37, 222-237.
Marofi, S., Toranjeyan, A. and Abyaneh, H. (2012). Evaluation of geostatistical methods for estimating electrical conductivity and pH of stream drained water in Hamedan-Bahar Plain .J. Water Soil Conser., 16(2)., 169-187 [In Persian].
Mohammadyari, F., Aqdar, H. and Basiri, R. (2016). Evaluation groundwater quality parameters using GIS and geostatistics (case Study: Mehran Plain and Dehloran Ilam). J. Nat. Environ., 69(3), 597-616 [In Persian].
Momeni, D. J., Joulaei, F., Alidadi, H. and Peiravi, R. (2015). Evaluation of interpolation methods to determine spatial variations of groundwater qualitative parameters (Case study: Gonabad Plain). J. Res. Environ. Health, 1(3), 165-17 [In Persian].
Nas, B. (2009). Geostatistical approach to assessment of spatial distribution of groundwater quality. Polish J. Environ. Stud., 18(6), 1073-1082.
Panaskar, D. B., Wagh, V. M., Muley, A. A., Mukate, S. V., Pawar, R. S. and Aamalawar, M. L. (2016). Evaluating groundwater suitability for the domestic, irrigation, and industrial purposes in Nanded Tehsil, Maharashtra, India, using GIS and statistics. Arab. J. Geosci., 9(13), 615.
Pourkhobaz, H. R., Aghdar, H. and MohammadYari, F. (2017). Zoning groundwater quality for agriculture by classification Wilcox index (Case study: Qazvin plain). Geogr-Space, (58)17, 111-129 [In Persian].
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils, agriculture handbook. United States, Department of Agriculture, 60 pp.
Rivastava, S. K. (2019). Assessment of groundwater quality for the suitability of irrigation and its impacts on crop yields in the Guna district, India. Agri. Water Manag., 216, 224-241.
Robinson, T. P and Metternicht, G. (2006). Testing the performance of spatial interpolation techniques for mapping soil properties. Comp. Electron. Agri., 50, 97-108.
Sadeghi Aghdam,  F., Nadiri, A., Asgharai, M. A. and Novinpour, A. (2019). Assessing the suitability and quality zoning of groundwater resources of Naqadeh plain for drinking, agriculture, and industrial purposes. J. R. S. GIS Nat. Resour., 9(4), 17-36 [In Persian].
Samson, M., Swaminathan, G. and Venkat, K. N. (2010). Assessing groundwater quality for potability using a fuzzy logic and GIS- A case study for Tiruchirappalli City- India. Comp. Model. New Technol., 14(2), 58-68.
Taheri Tizro, A. and Mohamadi, M. (2019). Geostatistical approach for groundwater quality evaluation in Zarin Abad Plain, Iran. Iran. J. Health Sci., 7 (3), 9-20 [In Persian].
Taghizadeh Mehrjard, R., Zareian Jahromi, M., Mahmoodi, S., Heidari, A. and Sarmadian, F. (2009). Investigation of interpolation methods to determine spatial distribution of groundwater quality in Rafsanjan. Iran. J. Watershed Manage. Sci. Eng., 2(5), 63-70 [In Persian].
Webster, R. and Oliver, M. (2007). Geostatistics for environmental scientists. 2nd edition, John Wiley & Sons Chichester, West Sussex. 210 pp.
Zhang, L., Lu, Z. and Wang, P. (2015). Efficient structural reliability analysis method based on advanced Kriging model. Appl. Math. Model., 39(2), 781-93.
Zhao, Y., Lu, W. and Xiao, C. (2016). A Kriging surrogate model coupled in simulation–optimization approach for identifying release history of groundwater sources. J. Contam. Hydrol., 185, 51-60.