Document Type : Research Paper

Authors

1 Ph.D. Scholar, Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

2 Assoc. Professor, Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

3 Assist. Professor, Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

4 Assist. Professor, Department of Plant Productions, Agricultural Faculty of Bardsir, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Constant and proper mixing of water in fish farms is essential for creating maximum uniformity, minimizing stagnant areas, properly distributing oxygen, and removing solid waste from the bottom of the ponds. The effect of the inflow installation mode and inflow momentum force in octagonal ponds was examined on the hydrodynamic flow mixing by laboratory modeling. For this purpose, the inflow was analyzed in three modes with angles of 90, 60, and 30° and the inflowing force at four levels with values of 0.004, 0.009, 0.013, and 0.018 N by the residence time distribution curve and hydraulic efficiency of octagonal ponds. The laboratory modeling results revealed that the inflow at the 90° mode for all four-momentum forces does not form an eddy current and short circuit in the pond's flow, as the result of which the hydraulic efficiency of the pond falls in the weak range. To improve the hydraulic efficiency of the pond, the inflow was installed at 60 and 30° modes; the results demonstrated 2.68 and 3.26 times higher efficiency than the 90° mode. Moreover, for all three inflow installation modes, the hydraulic efficiency had an inverse relationship with the inflow momentum force. 

Keywords

Main Subjects

Davidson, J., & Summerfelt, S. (2004). Solids flushing, mixing, and water velocity profiles within large (10 and 150 m3) circular ‘Cornell-type’ dual-drain tanks. Aquac. Eng., 32(1), 245-271. DOI: 10.1016/j.aquaeng.2004.03.009
Diken, G., & Koknaroglu, H. (2022). Projected annual production capacity affects sustainability of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) reared in concrete ponds in terms of energy use efficiency. Aquacul., 551, 737958. DOI: 10.1016/j.aquaculture.2022.737958
Gorle, J. M. R., Terjesen, B. F., Mota, V. C., & Summerfelt, S. (2018). Water velocity in commercial RAS culture tanks for Atlantic salmon smolt production. Aquac. Eng., 81, 89-100. DOI: 10.1016/j.aquaeng.2018.03.001
Gorle, J. M. R., Terjesen, B. F., & Summerfelt, S. T. (2019). Hydrodynamics of Atlantic salmon culture tank: Effect of inlet nozzle angle on the velocity field. Comput. Electron. Agric., 158, 79-91. DOI: 10.1016/j.compag.2019.01.046
Gorle, J. M. R., Terjesen, B. F., & Summerfelt, S. T. (2020). Influence of inlet and outlet placement on the hydrodynamics of culture tanks for Atlantic salmon. Int. J. Mech. Sci., 188, 105944. DOI: 10.1016/j.ijmecsci.2020.105944
Khater, ES., Ali, S., Abbas, W., Morsy, O., (2022). Flow patterns in circular fish tanks and its relations with flow rate and nozzle features, Sci. Rep., 12, 12883. DOI: 10.1038/s41598-022-17186-z
Labatut, R. A., Ebeling, J. M., Bhaskaran, R., & Timmons, M. B. (2007). Effects of inlet and outlet flow characteristics on mixed-cell raceway (MCR) hydrodynamics. Aquac. Eng., 37(2), 158-170. DOI: 10.1016/j.aquaeng.2007.04.002
Labatut, R. A., Ebeling, J. M., Bhaskaran, R., & Timmons, M. B. (2015). Modeling hydrodynamics and path/residence time of aquaculture-like particles in a mixed-cell raceway (MCR) using 3D computational fluid dynamics (CFD). Aquac. Eng., 67, 39-52. DOI: 10.1016/j.aquaeng.2015.05.006
Lekang O.I. (2013). Aquaculture Engineering. Blackwell Publishing Ltd. Press. pp: 224-237. DOI: 10.1002/9781118496077
Li, W., Cheng, X., Xie, J., Wang, Z., & Yu, D. (2019). Hydrodynamics of an in-pond raceway system with an aeration plug-flow device for application in aquaculture: an experimental study. R. Soc. Open Sci., 6(7), 182061. DOI: 10.1098/rsos.182061
Naserian. R., Harsij. M., Jafariyan. H., & Seyedian. S. M. (2018). Effect of different inlet on some Hydraulic characteristic of octagonal and circular reservoirs. Adv. Aquacul. Sci. J., 2(3), 45-58. [In Persian]
Oca, J., & Masalo, I. (2013). Flow pattern in aquaculture circular tanks: Influence of flow rate, water depth, and water inlet & outlet features. Aquac. Eng., 52, 65-72. DOI: 10.1016/j.aquaeng.2012.09.002
Papáček, Š., Petera, K., Císař, P., Stejskal, V., & Saberioon, M. (2020). Experimental & computational fluid dynamics study of the suitability of different solid feed pellets for aquaculture systems. Appl. Sci., 10(19), 6954. DOI: 10.3390/app10196954
Stephenson, R., & Sheridan, C. (2021). Review of experimental procedures and modelling techniques for flow behaviour and their relation to residence time in constructed wetlands. J. Water. Process. Eng., 41, 102044. DOI: 10.1016/j.jwpe.2021.102044
Summerfelt, R. C., & Penne, C. R. (2005). Solids removal in a recirculating aquaculture system where the majority of flow bypasses the microscreen filter. Aquac. Eng., 33(3), 214-224. DOI: 10.1016/j.aquaeng.2005.02.003
Stockton, K. A., Moffitt, C. M., Watten, B. J., & Vinci, B. J. (2016). Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows Pond rearing system. Aquac. Eng., 74, 52-61. DOI: 10.1016/j.aquaeng.2016.04.005
Timmons, M. B., Summerfelt, S. T., & Vinci, B. J. (1998). Review of circular tank technology and management. Aquac. Eng., 18(1), 51-69. DOI: 10.1016/S0144-8609(98)00023-5
Watten, B. J., Honeyfield, D. C., & Schwartz, M. F. (2000). Hydraulic characteristics of a rectangular mixed-cell rearing unit. Aquac. Eng., 24(1), 59-73. DOI: 10.1016/S0144-8609(00)00064-9
 Yu, G., Liu, C., Zheng, Y., Chen, Y., Li, D., & Qin, W. (2021). Meta-analysis in the production chain of aquaculture: A review. Inform. Process. Agricul., 9(4), 586-598. DOI: 10.1016/j.inpa.2021.04.002
Zhang, J., Jia, G., Wang, M., Cao, S., & Mkumbuzi, S. G. (2022). Hydrodynamics of recirculating aquaculture tanks with different spatial utilization. Aquac. Eng., 96, 102217. DOI: 10.1016/j.aquaeng.2021.102217
Zhou, W., Dong, B., Yang, J., & Wang, J. (2021). Correction of residence time distributions and hydraulic indexes affected by tracer release duration in surface flow constructed wetlands. J. Hydrol., 603, 127106. DOI: 10.1016/j.jhydrol.2021.127106
Zounemat-Kermani, M. (2016). Numerical modeling of hydrodynamic flow for optimizing design of cold-water fish rearing ponds. J. Aquacul. Develop., 10(2), 63-76. [In Persian]