Document Type : Research Paper

Authors

1 Ph.D. Scholar, Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

2 Assist. Professor, Department of Chemical Engineering, Faculty of Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

3 Assoc. Professor, Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

Abstract

The use of antibiotics as major drugs in infectious diseases has always been associated with two problems of side effects and drug resistance. The compounds found in various plants have been used as a treatment method since the past until today because medicinal plants possess side effects compared to other drugs. Given that different species of Echinops dichorus L. plant have indicated good antimicrobial effects, in this study antimicrobial effects of ethanol and aqueous extracts of Echinops dichorus L. plant have been investigated by disk diffusion method and determining the minimum inhibitory concentration (MIC) on the 24-hr culture of Escherichia coli (E. coli) standard strain. Echinops dichorus L. plant was dried after collection and its ethanol and aqueous extracts of were prepared by maceration method. Afterward, the concentrated and dried samples were stored in clean containers under standard conditions for further tests. The antibacterial effect of different concentrations of the extracts was determined by agar diffusion and compared with penicillin, gentamicin, and tetracycline antibiotics. Ethanol and aqueous extracts possessed a MIC of 31.25 µg/ml (diameter of the bacterial growth inhibition (halo): 12 mm) and 125 µg/ml (diameter of the bacterial growth inhibition (halo): 10 mm), respectively, as anti-microbial effect against E. coli.

Keywords

Main Subjects

Amin, M., Anwar, F., Janjua, M. R. S. A., Iqbal, M. A., & Rashid, U. (2012). Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial, and urease inhibitory activities against Helicobacter pylori. Int. J. Molecul. Sci., 13(8), 9923-9941. DOI: 10.3390/ijms13089923

Bitew, H., & Hymete, A. (2019). The Genus Echinops: Phytochemistry and Biological Activities: A Review. Front. Pharmacol., 10, 1234, DOI: 10.3389/fphar.2019.01234

Chugh, N. A., Bali, S., & Koul, A. (2018). Integration of botanicals in contemporary medicine: road blocks, checkpoints and go-ahead signals. Integr. Med. Res., 7(9), 109-125. DOI: 10.1016/j.imr.2018.03.005

Das, K., Tiwari, R. K. S., & Shrivastava, D. K. (2010). Techniques for evaluation of medicinal plant products as antimicrobial agents: current methods and future trends. J. Med. Plant Res., 4(2), 104-111, DOI: 10.5897/JMPR09.030

Falah, F., Shirani, K., Vasiee, A., Yazdi, F. T., & Behbahani, B. A. (2021). In vitro screening of phytochemicals, antioxidant, antimicrobial, and cytotoxic activity of Echinops setifer extract. Biocatal. Agri. Biotechnol., 35, 102102, DOI: 10.1016/j.bcab.2021.102102

Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S. R. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. J. Front. Microbiol., 9(50). DOI: 10.3389/fmicb.2018.01639

Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med., 8(4), 266-275. DOI: 10.1016/j.jaim.2017.05.004

Khan, M., Shaik, M. R., Adil, S. F., Khan, S. T., Al-Warthan, A., Siddiqui, M. R. H., Tahir, M. N. and Tremel, W. (2018). Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalton Trans., 47(35), 11988-12010, DOI: 10.1039/C8DT01152D

Manandhar, S., Luitel, S., & Dahal, R. K. (2019). In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J. Tropic. Med., 2019. DOI: 10.1155/2019/1895340

Mehrabian, S. (2007). The study of antioxidant and anticarcinogenic green tea and black tea. Pakistan J. Bio. Sci., 10(6), 989-991, DOI: 10.3923/pjbs.2007.989.991 

Mohammadi, S., Piri, K., & Dinarvand, M. (2019). Antioxidant and antibacterial effects of some medicinal plants of Iran. Int. J. Second. Metab., 6(1), 62-78, DOI: 10.21448/ijsm.514968

Mohebat, R., & Bidoki, M. Z. (2018). Comparative chemical analysis of volatile compounds of Echinops ilicifolius using hydrodistillation and headspace solid-phase microextraction and the antibacterial activities of its essential oil. R. Soc. Open Sci., 5(2), 171424, DOI: 10.1098/rsos.171424

Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., & Kale, S. P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnol., 19(7), 075103, DOI: 10.1088/0957-4484/19/7/075103  

Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 73(6), 1712-1720, DOI: 10.1128/AEM.02218-06

Parasuraman, S. (2018). Herbal drug discovery: challenges and perspectives. Curr. Pharmacogenomics Person. Med., 16(1), 63-68(6), DOI: 10.2174/1875692116666180419153313

Valero, M., & Salmeron, M. (2003). Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth. Int. J. Food Micro., 85(1), 73-81. DOI: 10.1016/S0168-1605(02)00484-1

Van Vuuren, S. F. (2008). Antimicrobial activity of South African medicinal plants. J. Ethnopharmacol., 119(3), 462-472, DOI: 10.1016/j.jep.2008.05.038  

Wikler, M. A. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI (NCCLS), 26, M7-A7. DOI: 10.1007/s10156-012-0543-z

Amin, M., Anwar, F., Janjua, M. R. S. A., Iqbal, M. A., & Rashid, U. (2012). Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial, and urease inhibitory activities against Helicobacter pylori. Int. J. Molecul. Sci., 13(8), 9923-9941. DOI: 10.3390/ijms13089923
Bitew, H., & Hymete, A. (2019). The Genus Echinops: Phytochemistry and Biological Activities: A Review. Front. Pharmacol., 10, 1234, DOI: 10.3389/fphar.2019.01234
Chugh, N. A., Bali, S., & Koul, A. (2018). Integration of botanicals in contemporary medicine: road blocks, checkpoints and go-ahead signals. Integr. Med. Res., 7(9), 109-125. DOI: 10.1016/j.imr.2018.03.005
Das, K., Tiwari, R. K. S., & Shrivastava, D. K. (2010). Techniques for evaluation of medicinal plant products as antimicrobial agents: current methods and future trends. J. Med. Plant Res., 4(2), 104-111, DOI: 10.5897/JMPR09.030
Falah, F., Shirani, K., Vasiee, A., Yazdi, F. T., & Behbahani, B. A. (2021). In vitro screening of phytochemicals, antioxidant, antimicrobial, and cytotoxic activity of Echinops setifer extract. Biocatal. Agri. Biotechnol., 35, 102102, DOI: 10.1016/j.bcab.2021.102102
Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S. R. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. J. Front. Microbiol., 9(50). DOI: 10.3389/fmicb.2018.01639
Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med., 8(4), 266-275. DOI: 10.1016/j.jaim.2017.05.004
Khan, M., Shaik, M. R., Adil, S. F., Khan, S. T., Al-Warthan, A., Siddiqui, M. R. H., Tahir, M. N. and Tremel, W. (2018). Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalton Trans., 47(35), 11988-12010, DOI: 10.1039/C8DT01152D
Manandhar, S., Luitel, S., & Dahal, R. K. (2019). In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J. Tropic. Med., 2019. DOI: 10.1155/2019/1895340
Mehrabian, S. (2007). The study of antioxidant and anticarcinogenic green tea and black tea. Pakistan J. Bio. Sci., 10(6), 989-991, DOI: 10.3923/pjbs.2007.989.991 
Mohammadi, S., Piri, K., & Dinarvand, M. (2019). Antioxidant and antibacterial effects of some medicinal plants of Iran. Int. J. Second. Metab., 6(1), 62-78, DOI: 10.21448/ijsm.514968
Mohebat, R., & Bidoki, M. Z. (2018). Comparative chemical analysis of volatile compounds of Echinops ilicifolius using hydrodistillation and headspace solid-phase microextraction and the antibacterial activities of its essential oil. R. Soc. Open Sci., 5(2), 171424, DOI: 10.1098/rsos.171424
Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., & Kale, S. P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnol., 19(7), 075103, DOI: 10.1088/0957-4484/19/7/075103  
Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 73(6), 1712-1720, DOI: 10.1128/AEM.02218-06
Parasuraman, S. (2018). Herbal drug discovery: challenges and perspectives. Curr. Pharmacogenomics Person. Med., 16(1), 63-68(6), DOI: 10.2174/1875692116666180419153313
Valero, M., & Salmeron, M. (2003). Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth. Int. J. Food Micro., 85(1), 73-81. DOI: 10.1016/S0168-1605(02)00484-1
Van Vuuren, S. F. (2008). Antimicrobial activity of South African medicinal plants. J. Ethnopharmacol., 119(3), 462-472, DOI: 10.1016/j.jep.2008.05.038  
Wikler, M. A. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI (NCCLS), 26, M7-A7. DOI: 10.1007/s10156-012-0543-z