Document Type : Research Paper

Authors

1 PhD Scholar, Department of Civil, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

2 Professor, Department of Civil, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

3 Assoc. Professor, Department of Civil, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

4 Assoc. Professor, Department of Climatology, Faculty of Geography, University of Tehran, Tehran, Iran

Abstract

Precipitation is an important variable in hydrological studies. The high spatial and temporal variability of precipitation makes it difficult to monitor it with observations. The use of satellite data and weather models is a suitable solution for this problem. But, before using these data, their spatial and temporal accuracy should be considered. The aim of this study was to evaluate the accuracy of monthly precipitation data TRMM_3B43_V7, PERSIANN, and ECMWF-ERA5 in comparison with the data of 13 observation stations in the South Baluchestan basin during the period 2000 to 2018. For statistical evaluation of the mentioned data, the coefficient of determination (R2), N-S efficiency factor, the degree of bias (BIAS), index agreement (IA), and ratio root mean square error (RRMSE) were used. The results showed that the best performance was exhibited by TRMM (R2=0.624) and ERA5 (R2=0.562), respectively. PERSIANN data (R2=0.307) did not provide an accurate estimate of precipitation. TRMM data are usually better estimated in areas far from the sea, which usually have higher elevations and receive more precipitation. The TRMM data is overestimated and the ERA5 data is underestimated. Data from both databases performed better in the winter months.

Keywords

Main Subjects

Almazroui, M. (2011). Calibration of TRMM rainfall climatology over Saudi Arabia during 1998-2009. Atmosphere. Res., 99(3-4), 400 - 414. DOI: 10.1016/j.atmosres.2010.11.006
Amini, A., Abdeh Kolahchi, A., Al-Ansari, N., Karami Moghadam, M. and Mohammad, T. (2019). Application of TRMM precipitation data to evaluate drought and its effects on water resources instability. Appl. Sci. 9(24), 5377, DOI: 10.3390/app9245377.
Amjad, M., Yilmaz, M. T., Yucel, I. and Yilmaz, K. K. (2020). Performance evaluation of satellite-and model-based precipitation products over varying climate and complex topography. J. Hydrol, 584, 124707, DOI: 10.1016/j.jhydrol.2020.124707.
Tran Anh, D., Van, S. P., Dang, T. D. and Hoang, L. P. (2019). Downscaling rainfall using deep learning long short-term memory and feedforward neural network. Int. J. Climat., 39(10), 4170-4188. DOI: 10.1002/joc.6066.
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R. and Prat, O. P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multi satellite observations for hydrological and climate studies. Am. Meteorol. Soc., 96(1), 69–83. DOI: 10.1175/BAMS-D-13-00068.1.
Azizi Mobaser, J., Rasoulzadeh, A., Rahmati, A., Shayeghi, A. and Bakhtar, A. (2021). Evaluating the performance of Era-5 Re-analysis data in estimating daily and monthly precipitation, Case Study; Ardabil Province. Iran. J. Soil Water Res., 51(11), 2937-2951. DOI: 10.22059/ijswr.2020.302176.668600 [In Persian].
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Munoz-Sabater, J., Fappenberger, F., de Rosny, P., Stockdale, T. and Vitari, F. (2015). ERA-Interim/Land: a global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19(1), 389-407. DOI: 10.5194/hess-19-389-2015.
Cohen Liechti, T., Matos, J. P., Boillat, J. L. and Schleiss, A. J. (2012). Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin. Hydrol. Earth Syst. Sci., 16, 489-500.‏ DOI: 10.5194/hess-16-489-2012.
Darand, M. and Zand Karimi, S. (2015). Evaluation of spatial-temporal accuracy of precipitation of European center for medium-range weather forecasts (ECMWF) over Iran. Phys. Geogr. Res. Quart., 47(4), 651-675. DOI:10.22059/jphgr.2015.56054 [In Persian].‏
DeLeeuw, J., Methven, J. and Blackburn, M. (2015). Evaluation of ERA-Interim reanalysis precipitation products using England and Wales observations. Quart. J. Royal Meteorol. Soc., 141(688), 798-806. DOI: 10.1002/qj.2395.
Erfanian, M., Kazempour, S. and Heidari, H. (2013). Evaluation and calibration of TRMM satellite rainfall data in arid and semi-arid regions of Iran. Quart. Geogra. (Region. Plan.), 3(3), 82-95 [In Persian].
Faghih, H., Behmanesh, J. and Khalili, K. (2018). Simulation of spatiotemporal annual precipitation using stochastic models. J. Water Soil Sci., 22(1), 367-386. DOI: 10.29252/jstnar.22.1.367 [In Persian].
Hughes, D. A., Andersson, L., Wilk, J. and Savenije, H. (2006). Regional calibration of the Pitman model for the Okavango River. J. Hydrol., 331(1-2), 30–42. DOI: 10.1016/j.jhydrol.2006.04.047
Katiraie Boroujerdy, P. S. (2013). Comparison of high-resolution gridded monthly satellite and ground-based precipitation data over Iran. Iran. J. Geophys., 7(4), 149-160 [In Persian].
Khosravi, M., Bostani, M., Azizoghli, M. A. and Goodarzifar, M. (2013). Comparison of the Sistan and Baluchistan Province precipitation zones using satellite data and ground stations. J. Climat. Res., 1392(13), 97-110 [In Persian].
Masoodian, S. A., Rayatpisheh, F. and Keykhosravi Kiani, M. S. (2014). Introducing the TRMM and Asfezari precipitation database: A comparative study. Iran. J. Geophys., 8(4), 15-31 [In Persian].
Miri, M., Rahimi, M. and Noroozi, A. (2020). Evaluation and comparison of GPM and TRMM daily precipitation with observed precipitation across Iran. Watershed Eng.  Manage., 11(4), 972-983. DOI: 10.22092/ijwmse.2018.121397.1469 [In Persian].‏
Moradi, H. (2020). Evaluation of different interpolation methods in climatic zones of Ilam Province. Geogra. Human Relation., 2(4), 1-15. DOI: 20.1001.1.26453851.1399.2.4.1.9 [In Persian].
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner R. L., Harmel, R. D. and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transact. Am. Soc. Agri. Bio. Eng., 50(3), 885-900. DOI: 10.13031/2013.23153
Nicholson, S. (2005). On the question of the ‘‘recovery’’ of the rains in the west African Sahel. J. Arid Environ., 63(3), 615–641. DOI: 10.1016/j.jaridenv.2005.03.004.
Raziei, T. and Pereira, L. S. (2013). Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets. Agri. Water Manage., 126, 104-118. DOI: 10.1016/j.agwat.2013.05.003.
Raziei, T. and Sotoudeh, F. (2017). Investigation of the accuracy of the European center for medium range weather forecasts (ECMWF) in forecasting observed precipitation in different climates of Iran. J. Earth Space Phys., 43(1), 133-147. DOI: 10.22059/JESPHYS.2017.57958 [In Persian].‏
Sattari, M. T., Rezazadeh-Joudi, A., & Kusiak, A. (2017). Assessment of different methods for estimation of missing data in precipitation studies. Hydrol. Res., 48(4), 1032-1044. DOI: 10.2166/nh.2016.364. 
Sorooshian, S., Hsu, K. L., Imam, B., and Hong, Y. (2008). Global precipitation estimation from satellite image using artificial neural networks. In Hydrological Modelling in Arid and Semi‐Arid Areas. Cambridge University Press. pp. 21–27. DOI: 10.1017/CBO9780511535734.003
Tian, Y. and Peters-Lidard, C. D. (2007). Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett., 34(14). DOI: 10.1029/2007GL030787
Xu, X., Frey, S. K., Boluwade, A., Erler, A. R., Khader, O., Lapen, D. R. and Sudicky, E. (2019). Evaluation of variability among different precipitation products in the Northern Great Plains. J. Hydrol. Reg. Stud., 24, 100608. DOI: 10.1016/j.ejrh.2019.100608