Document Type : Research Paper

Authors

1 M. Sc. Alumni, Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran

2 Assoc. Professor, Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran

3 Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

Pharmaceutical contaminants are one of the most important environmental problems that must be cleared of aqueous environments before they enter the environment. Adsorption method is operationally easy and cost-effective if the adsorbent is not expensive. The purpose of this study is optimization the process of removal of tetracycline from aqueous solutions by nanoclay adsorbent and investigation the kinetics and adsorption isotherms. In this study, after preparing the nanoclay, optimization of parameters was done with Design Expert software. The parameters effect of pH, initial concentration and amount of adsorbent were investigated and SEM, XRD and FTIR analyzes were done to identify nanoclay properties. The optimal values ​​of parameters were pH equal to 9.5, adsorbent amount equal to 1.2 g and initial concentration equal to 21.15 mg /l at 25 °C, time of 30 min and stirring speed of 1000 rpm. The study of kinetic models and equilibrium isotherms showed that the adsorption follows the Pseudo-second Order (R2=0.999(   and   the Langmuir model, respectively. Under optimal condition, nanoclay as a low cost and environmentally friendly adsorbent has a good ability to adsorb tetracycline from aqueous solutions.

Keywords

Main Subjects

Alahabadi, A., Moussavi, G., Yaghmaeian, K. and Karemisany, H. (2014). Adsorption potential of the granular activated carbon for the removal of amoxicillin from water.  J. Sabzevar Uni. of Med. Sci., 20(4) 573-582 [In Persian].
Ali, I. and Gupta, V. K. (2006). Advances in water treatment by adsorption technology.  Nature Protocols, 1(6) 2661-2667. DOI: 10.1038/nprot.2006.370
Alidadi, H., Dolatabadi, M., Mehrabpour, M. and Dehghan, A. (2017). The efficacy of ciprofloxacin removal by Chitosan/Zeolite composite from aqueous solution: Response surface methodology, kinetic and isotherm studies. J. Health Field, 5(1), 1-12 [In Persian].
Álvarez-Torrellas, S., Rodríguez, A., Ovejero, G. and García, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem. Eng. J., 283, 936-947. DOI: 10.1016/j.cej.2015.08.023
Behzadi, M. and Mohagheghian, M. (2014). Study on Steel Slag and determine adsorption isotherm Ce phalexin and absorption kinetics. 2nd Nat. Conf. on Env. and Res. of Iran, Hamadan [In Persian].
Castiglioni, S., Calamari, D., Bagnati, R., Zuccato, E. and Fanelli, R. (2004). Comparison of the concentrations of pharmaceuticals in STPs and rivers in Italy as a tool for investigating their environmental distribution and fate. Abstract SETAC Europe. 14th annual meeting (pp. 18-22).
Dehghani, M. H., Dehghan, A., Alidadi, H., Dolatabadi, M., Mehrabpour, M. and Converti, A. (2017). Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: Kinetic and equilibrium study. Korean J. Chem. Eng., 34(6), 1699-1707. DOI: 10.1007/s11814-017-0077-2
Eskandariyan, A., Azad, S. S., Rahmani Sani, A., Rastegar, A. and Alahabadi, A. (2017). Efficiency evaluation of activated carbon making from sycamore wood and treated with ammonium chloride in the removal of amoxicillin from aqueous solutions.  J. Sabzevar Uni. of Med. Sci., 24(3), 183-189 [In Persian].
Fahelelbom, K. M. (2008). Analysis of certain tetracyclines and oxytetracyclines through charge transfer complexation. American J. Pharmacol. Toxicol., 3(3), 212-218. DOI: 10.3844/ajptsp.2008.212.218
Gürses, A., Doğar, Ç., Yalçın, M., Açıkyıldız, M., Bayrak, R. and Karaca, S. (2006). The adsorption kinetics of the cationic dye, methylene blue, onto clay. J. Hazard. Mater., 131(1-3), 217-228. DOI: 10.1016/j.jhazmat.2005.09.036
Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y. and Zou, L. (2008). Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresour. Technol., 99(8), 2938-2946. DOI: 10.1016/j.biortech.2007.06.027
Hinkelmann, K. (Ed.). (2012). Design and analysis of experiments, volume 3: special designs and applications (Vol. 810). John Wiley & Sons.
Kakavandi, B., Rezaei, K. R., Jonidi, J. A., Esrafily, A., Gholizadeh, A. and Azari, A. (2014). Efficiency of powder activated carbon magnetized by Fe3O4 nanoparticles for amoxicillin removal from aqueous solutions: Equilibrium and kinetic studies of adsorption process. Iran J. Heal. Environ., 7 (1) 21-34 [In Persian].
‏ Kuo, C. Y., Wu, C. H. and Wu, J. Y. (2008). Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. J. Colloid. Interface. Sci., 327(2), 308-315. DOI: 10.1016/j.jcis.2008.08.038
Marzbali, M. H., Esmaieli, M., Abolghasemi, H. and Marzbali, M. H. (2016). Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study. Proc. Safet. Env. Prot., 102, 700-709. DOI: 10.1016/j.psep.2016.05.025
Montgomery, D. C. (1996). Design and analysis of experiments. 4th ed. Jonh Wiley & Sons Inc. New York.
Ofomaja, A. E. (2010). Intraparticle diffusion process for lead (II) biosorption onto mansonia wood sawdust. Bioresour. Technol., 101(15), 5868-5876. DOI: 10.1016/j.biortech.2010.03.033
Rafatullah, M., Sulaiman, O., Hashim, R. and Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mat., 177(1-3), 70-80. DOI: 10.1016/j.jhazmat.2009.12.047
Ritchie, A. G. (1977). Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. J. Chem. Society, Faraday Transact. 1: Phys. Chem. Condens. Phase., 73, 1650-1653. DOI: 10.1039/F19777301650
Runping, H. A. N., Pan, H. A. N., Zhaohui, C., Zhenhui, Z. H. A. O. and Mingsheng, T. A. N. G. (2008). Kinetics and isotherms of neutral red adsorption on peanut husk. J. Env. Sci., 20(9), 1035-1041. DOI: 10.1016/S1001-0742(08)62146-4
Salahshoor, Z. and Shahbazi, A. (2016). Modeling and optimization of cationic dye adsorption onto modified SBA-15 by application of response surface methodology. Desal. Wat. Treat., 57(29), 13615-13631. DOI: 10.1080/19443994.2015.1060537
Samadi, M. T., Shokoohi, R., Araghchian, M. and Azar, M. T. (2014). Amoxicillin removal from aquatic solutions using multi-walled carbon nanotubes. J. Mazandaran Univ. Med. Sci., 24(117), 103-115 [In Persian].
Sayğılı, H. and Güzel, F. (2016). Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste. Ecotoxic. Env. Safet., 131, 22-29. DOI: 10.1016/j.ecoenv.2016.05.001
Sobhanardakani, S., Cheraghi, M., Jafari, A. and Zandipak, R. (2020). PECVD synthesis of ZnO/Si thin film as a novel adsorbent for removal of azithromycin from water samples. Int. J. Env. Anal. Chem., 100(2), 1-18. DOI:10.1080/03067319.2020.1793973
Sobkowski, J. and Czerwiński, A. (1974). Kinetics of carbon dioxide adsorption on a platinum electrode. J. Electroanal. Chem. Interfac. Electrochem., 55(3), 391-397. DOI: 10.1016/S0022-0728(74)80433-X
Treybal, R.E. (2001). Mass transfer operations, McGraw Hill, New York.
Varzaneh, A. Z., Towfighi, J., Kootenaei, A. H. S. and Mohamadalizadeh, A. (2015). Effect of cerium and zirconium nanoparticles on the structure and catalytic performance of SAPO-34 in steam cracking of naphtha to light olefins. Reac. Kinet. Mech. Cat., 115(2), 719-740. DOI: 10.1007/s11144-015-0862-z
Zandipak, R. and Sobhanardakani, S. (2018). Novel mesoporous Fe3O4/SiO2/CTAB–SiO2 as an effective adsorbent for the removal of amoxicillin and tetracycline from water. Clean Technol. Environ. Policy, 20(4), 871-885. DOI: 10.1007/s10098-018-1507-5