Document Type : Research Paper

Authors

1 PhD Scholar, Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran

2 Assoc. Professor, Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran

3 Assist. Professor, Department of Chemical Engineering, Faculty of Engineering, University of Qom, Qom, Iran

Abstract

Water is a vital substance for human and water supply has become a crisis in many arid countries. Due to arid and semi-arid climate of Iran, it has many challenges to supply fresh water. According to the urgent need for water and also the lack of water resources, it is a nessessity to implement the water management programs like recycle and reuse of runoffs in order to meet the water needs in agriculture and green space. Nowadays, use of concrete porous pavements in urban paths is increased significantly, and it can be used to reduce water pollution. Due to the usefulness of different adsorbents in reducing pollution, in this study the effect of replacing pumice, scria, zeolite and travertine adsorbents with volume percentages of 25, 50, 75 and 100% and metal sulfide nanoparticles with 1, 2, 3 and 4% with porous concrete aggregates on qualitative parameters in runoff have been investigated by Taguchi method. Experiments related to physical properties were performed in the concrete technology laboratory as well as tests related to qualitative parameters in the chemistry laboratory. In this study, three parameters of additive, volume percentage of additive and metal sulfide nanoparticles have been used. Finally, using Minitab and Excel software, the parameters and the effect of each of them in reducing pollution were investigated. The results showed that the greatest impact on reduction of pollution was the percentage of additive, type of additive and volume of nanoparticles, respectively. Finally, as a proposed concrete mix design that has the highest effect on pollution elimination, 75% of the volume fraction and 1% of the nanoparticle can be introduced.

Keywords

Main Subjects

Abedi Kopai J. and Najafi P. (2001). Use of treated wastewater in agricultur. National Committee for Irrigation and Drainage of Iran, 248 pages [In Persian].
Abedi Kopai J., Javaheri Tehrani M. and Behfarnia K. (2015). Improving the quality of wastewater in urban wastewater using porous concrete for irrigation. J. Water Soil Sci., 19(71), 93-106 [In Persian].
Alizadeh R., Malakutikhah J. and Koohi K. (2010). Determining the expenditure of wastewater leaving the wastewater treatment plant on wheat yield and quality and some soil characteristics in Sistan region. J. Agri. Sci. Technol. Nat. Resour., 10(4), 59-75 [In Persian].
Azad A., Mousavi F., Karami H ., Farzin S., an Singh V. P. (2019). The effect of vermiculite and quartz in porous concrete on reducing storm-runoff pollution. ISH J. Hydraul. Eng., 1-8.
Bao T., Chen T., Wille M. L., Chen D., Bian J., Qing C., Wu W. and Frost R. L. (2016). Advanced wastewater treatment with autoclaved aerated concrete particles in biological aerated filters. J. Water Process Eng., 9, 188-194.
Chow M. F., Yusop Z. and Toe Y. F. (2016). Evaluation of stormwater runoff quality during monsoon and inter-monsoon seasons at tropical urban catchments. Int. J. River Basin Manage., 14(1), 75-82.
Deffontis S., Breton A., Vialle C., Montréjaud-Vignoles M., Vignoles C. and Sablayrolles C. (2013). Impact of dry weather discharges on annual pollution from a separate storm sewer in Toulouse, France. Sci. Total Environ., 452, 394-403.
Ghafourian A., Tajrishi M. and Abrishamchi A. (2012). Urban water management in terms of effluent and runoff as new water sources) case study of Tehran. J. Water Wastewater, 4(23), 29-43.
Gholhaki M., Yeganeh B. and Ahmadi Pouya R. (2008). Salt and lip water resources management based on nanofiltration solutions, 3rd Iranian Water Resources Management Conference, Faculty of Civil Engineering, University of Tabriz , 14 october [In Persian].
Holmes R. R., Hart M. L. and Kevern J. T. (2017). Enhancing the ability of pervious concrete to remove heavy metals from stormwater. J. Sustain. Water Built Environ., 3(2), 04017004.
Javani H. R. (2013). Study of the reduction of pollutants in treated wastewater in the artificial feeding system. Master's thesis, Agricultural Campus and Natural Resources, University of Tehran [In Persian].
Jo M., Soto L., Arocho M., St John J. and Hwang S. (2015). Optimum mix design of fly ash geopolymer paste and its use in pervious concrete for removal of fecal coliforms and phosphorus in water. Constr. Build. Mater., 9, 1097-1104.
Joshaghani A., Ramezanianpour A. A., Ataei O. and Golroo A. (2015). Optimizing pervious concrete pavement mixture design by using the Taguchi method. Constr. Build. Mater, 101, 317-325.
Khodadoost Gamchi M. and Pashaei Golmarz L. (2015). The effect of porous concrete on public urban thoroughfares in the catchment area of Urmia Lake on the restoration of Lake Urmia. the 4th National Conference on Materials and New Structures, 4 november [In Persian].
Mallin M. A., and McIver M. R. (2012). Pollutant impacts to Cape Hatteras National Seashore from urban runoff and septic leachate. Marine Pollution Bulletin. 64(7), 1356-1366.
Ministry of Energy, Office of Water Engineering Standards, (2003). A guide to the operation and maintenance of urban wastewater treatment plants - natural treatment plants and stabilization ponds. Journal 270-A [In Persian].
Montgommery M., Douglas C. and Nooralsana R. editor (2007). Statistical Quality Control. University of Science and Technology Publications, Seventh Edition. 330-370.
Ranjit R. (1990). A primer on the taguchi method. Competitive Manufacturing, American.
Rezvani Moghadam P. and Mirzaei M. (2010). The effect of different rat water ratios with treated wastewater on morphological characteristics, yield and yield components of corn, sorghum and millet. Iran. J. Agri. Res., 7(1), 63-77 [In Persian].
Taguchi G. and Konishi S., (1987). Taguchi method orthogonal arrays and linear graphs. Tools for Quality Engineering, American.
Zadjan Ali Choubari F., Navabian M., Dostieh Doust M. and Ismail Varki M. (2016). Study of the effect of environmental and hydraulic factors on the rate of removal of agricultural effluent phosphorus by limestone. Iran. Water Soil Res., 47(1), 65-76. [In Persian].
Zandieh M. and Akhavan Niaki T. (2002). Optimization of quality through parameter design by Taguchi method. Second National Conference on Industrial Engineering, University of Yazd, Yazd, Iran, 30 May [In Persian].