Document Type : Research Paper

Authors

1 M.Sc., Department of Environmental Technologies, Institute of Environment, Shahid Beheshti University, Tehran, Iran

2 M.Sc., Department of Environment, Faculty of Natural Resources and Desertology, University of Yazd, Yazd, Iran

Abstract

The introduction of pesticides into drinking water sources has harmful effects on human health and the environment. In recent years, several methods for the removal of organophosphate pesticide water sources have been emerged. The aim of the present study was to determine the modified nanographene oxide efficiency in the removal of malathion from aqueous media. Optimization of effective parameters in the adsorption process including pH and conact time was performed. Measuring the absorbance rate of malathion was carried out using atomic adsorption spectrometer. The results of pH experiments showed that the optimal pH for malathion adsorption was 7. The removal percentage at this pH was 99.8. The study of the contact time of adsorbent with metal ion showed that the highest adsorption rate obtained within less than 2 min.

Keywords

Main Subjects

Abdel Salam, M. M. M., Basahel S. N., Al-Thabaiti, S. A. and Obaid A. Y. (2010). Removal of chlorophenol from aqueous solutions by multi-walled carbon nanotubes: Kinetic and thermodynamic studies. J. Alloy. Comp., 500, 87-92.
 
Alavanja M. C., Hoppin J. A. and Kamel F. (2004). Health effects of chronic pesticide exposure: cancer and neurotoxicity. Ann. Rev. Public Health, 25, 155-197.
 
Arcury T. A., Quandt S. A. and Mellan B. G. (2003). An exploratory analysis of occupational skin disease among Latino migrant and seasonal Frameworkers in North Carolina. J. Agri. Safety Health, 9(3), 221-232.
 
El Bakouri H., Morillo J., Usero J. and Ouassini A. (2008). Potential use of organic waste substances as an ecological technique to reduce pesticide ground water contamination. J. Hydrol., 353, 335-342.
Fang M., Wang K. G., Lu B., Yang Y. L. and Nutt S. (2010). Nano materials, polymers, and devices. J. Mater. Chem., 20, 1982-1992.
 
Fireston J. A., Smith Weller T., Franklin G. S. and Wanson P. (2005), Pesticides and risk of parkinson disease: a populationbased case- control study. Arch. Neurol., 1, 91-95.
 
Gao C., Yu X., Xu R., Liu J. and Huang X. (2012). AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for intestinal cell line Caco-2. Toxicol. in Vitro, 23, 1491–1496.
 
Garcia-Valdez O., Ledezma-Rodriguez R., Saldivar-Guerra E., Yate L., Moya S. and Ziolo R. F. (2014). Polymer, 55, 2347-2355.
 
Guo C., Cai Y., Zhao H., Wang D., Hou Y., Lv J., Qu H., Dai D., Cai X., Lu J. and Cai J. (2019). Efficient synthesis of graphene oxide by Hummers method assisted with an electric field. Mat. Res. Express., 6(5), (In Press).
 
Hadeian Z. and Azizi M. H. (2006). Determination pesticides residue in Tehran vegetables and fruits by GC/MS in 2005. Food Sci. Food Indus. Iran, 2, 13-20 [in Persian].
 
Ho Y. S. and McKay G. (1999). Pseudo-second order model for sorption processes. Process Biochem., 34(5), 451-465.
 
Jos A., Pichardo S., Puerto M., Sanchez E., Grilo A. and Camean A. M. (2009). Toxicology in vitro cytotoxicity of carboxylic acid functionalized single wall carbon nanotubes on the human of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J., 157, 238–248.
 
Kamel F. (2003), Neurobehavioral performance and work experience in floride frameworkers. Environ. Health Perspect., 111, 1765-1772.
 
Khamsi R. (2006). Pesticide exposure raises risk of Parkinson's. available at: https://www.newscientist.com/article/dn9408-pesticide-exposure-raises-risk-of-parkinsons/.
 
Khara H., Salar Amoli J., Mazlomi H., Nezami S. H., Zolfinejad K. and Khodaparast S. H. (2009). Survey on season agricultural pesticides (hinozan, machete, diazinon) in the Ashmak River of Gilan. J. Bio. Sci. Lahijan, 1, 29-43 [in Persian].
 
Khodabakhshi S. and Karami B. (2014). Graphene oxide nanosheets as metal-free catalysts in the three-component reactions based on aryl glyoxals to generate novel pyranocoumarins. New J. Chem., 38, 3586-3590.
 
Khodadadi M., Samadi M. T., Rahmani A. R., Maleki R., Allahresani A. and Shahidi R. (2009). Determination organophosphorous and carbamat pesticides residue in drinking Water resourses of Hamadan in 2007. Iran. J. Health Environ.,4, 250-256 [In Persian].
 
Li R. B. K. D. (2008). Materials science. Graphene-based materials. Sci., 320, 1170–1171.
 
Liu Y., Liu C. Y. and Liu Y. (2011). Investigation on fluorescence quenching of dyes by graphite oxide and grapheme. Appl. Surf. Sci., 257, 5513–5518.
 
Madadrang C. J., Kim H. Y., Gao G., Wang N., Zhu J. and Feng H. (2012). Adsorption Behavior of EDTA-Graphene Oxide for Pb (II) Removal Matthew Gorring, Marc L. Kasner, and Shifeng Hou. ACS Appl. Mater. Interfa., 4, 1186−1193.
 
Shahbazi A., Younesi H. and Badiei A. (2011). Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chem. Eng. J., 168, 505–518.
 
Shen X. J., Pei X.Q., Fu S - Y. and Friedrich K. (2013). Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer, 54, 1234-1242.
 
Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. T. and Ruoff R. S. (2006). Graphene-based composite materials. Nat., 442, 282-286.
 
Sutter P. W., Flege J. I. and Sutter E. A. (2000). Epitaxial grapheme on ruthenium. Nat., Mater., 7, 406-411.
 
Travlou N. A., Kyzas G. Z., Lazaridis N. K. and Deliyanni, E. A. (2013). Graphite oxide/chitosan composite for reactive dye removal. Chem. Eng. J., 217, 256–265.
 
USEPA. Summary of pesticide removal/ transformation efficiencies from various drinking water treatment processes. USA: USEPA; (2000), [cited 12 Jun 2018]. Available from: http://www.epa.gov/ oppfead1/carat/2000/oct/dw4.pdf.
 
USEPA. What is a pesticide? USA: (2006). [cited 12 Feb 2018]. Available from: http://www.epa.gov/ pesticide/about/index.html.
 
Vukovi G. D., Marinkovi A. D., Oli M., Risti M., Aleksi R., Peri – Gruji A. A. and Uskokovi P. S. (2010). Removal adsorption toward toxic metal ions results in selective response: electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite. Chem. Commun., 48, 2180-2182.
 
Wang N., Zhu J.  and Feng H. (2012). Adsorption Behavior of EDTA-Graphene Oxide for Pb (II) Removal Matthew Gorring, Marc L. Kasner, and Shifeng Hou. ACS Appl. Mater. Interfac., 4, 1186−1193.
 
Zandmoghaddam A., Kalantary H. A., Mohammadpour A. and Jafarzadeh Haghighifard N. (2002). Determination of organocholorine pesticides (aldrin, dieldrin, DDT and its drivates) in Karoon River by HPLC. Sci. Med. J., 33, 10-18 [In Persian].
 
Zhao G., Li J., Ren X., Chen C. and Wang X. (2012). Preparation of chelating polymer grafted magnetic adsorbent and its application for removal of Pb(II) ions few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol., 45, 10454–10462.
 
Zhao G., Wen T., Yang X., Yang S., Liao J., Hu J., Shao D. and Wang X. (2014). Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans, 41, 6182-6188.