نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی‌ارشد، گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

2 دانشیار، گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

3 دکتری علوم و مهندسی آب، شرکت آب منطقه‌ای یزد، یزد، ایران

4 استادیار، گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

چکیده

با هدف بررسی کارائی زغال زیستی برای شوری­زدایی، آزمایش­ها با استفاده از تیمار جاذب در چهار سطح شامل کنجاله کنجد، زغال­زیستی در دماهای 400، 500 و ℃ 600 و تیمار آب شور در چهار سطح شامل 5، 10، 20 و dS/m 35 در سه تکرار به صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی در محیط ناپیوسته انجام شد. جذب یون­های عامل شوری آب در حضور یون مس و بدون حضور آن بررسی شد. نتایج نشان داد که ظرفیت شوری­زدایی بدون حضور مس در بهترین جاذب (زغال زیستی 600) در شوری­ مورد مطالعه mg/g 6/411 بود. در صورتی­که ظرفیت شوری­زدایی در حضور یون مس با همین جاذب در شوری مورد نظر mg/g 2/382 به­دست­آمد که نشان­دهنده ایجاد رقابت بین یون­ها و در نتیجه کاهش 0/8% میزان ظرفیت جذب است. هم­چنین بیش­ترین جذب مربوط به یون­های کلر و سدیم و کم­ترین آن به یون پتاسیم اختصاص یافت. به­طور کلی می­توان نتیجه گرفت زغال­زیستی تهیه شده از کنجاله کنجد، به دلیل داشتن سطح فعال بالا، ساختار متخلخل و گروه­های عاملی مناسب در سطح، در شوری­زدایی از پساب حاوی یون مس در فرآیند جذب سطحی عملکرد مطلوبی دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Efficiency Investigating of Biochar for Desalination in the Presence of Copper Ions

نویسندگان [English]

  • Mohammadmehdi Hasan-Abadi 1
  • Somayeh Soltani-Gerdefaramarzi 2
  • Mohsen Ghasemi 3
  • Abolfazl Azizian 4

1 M.Sc. Alumnus, Department of Water Sciences and Engineering, Collage of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran

2 Assoc. Professor, Department of Water Sciences and Engineering, Collage of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran

3 PhD of Water Sciences and Engineering, Planning, Yazd Regional Water Company, Yazd, Iran

4 Assist. Professor, Department of Water Sciences and Engineering, Collage of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran

چکیده [English]

With the aim of investigating the efficiency of biochar for desalination, experiments with adsorbent treatment at four levels including sesame flour, biochar at temperatures of 400, 500 and 600 ℃ and salt water treatment at four levels including 5, 10, 20 and 35 dS/m were conducted in three replications as a factorial experiment in the form of a completely randomized design in a discontinuous environment. The adsorption of the salinity factor ions was studied in the presence and absence of copper ions. The results showed that the desalination capacity without the presence of copper ions in the best adsorbent (Biochar 600) was obtained at the studied salinities of 411.6 mg/g. While the desalination capacity in the presence of copper ions using the same adsorbent at the studied salinities was 382.2 mg/g, indicating competition between ions and 8.0% decrease in adsorption capacity for salinity 35 dS/m. In both the presence and absence of copper, the highest adsorption was assigned to chlorine and sodium ions and the lowest to potassium ion. In summary, sesame flour biochar, owing to its high active surface area, porous structure, and suitable functional groups on the surface, effectively adsorbs salt ions in the presence of copper ions during the adsorption process. 

کلیدواژه‌ها [English]

  • Adsorption
  • Biochar
  • Copper
  • Saline Wastewater
  • Sesame Residue
Aghakhani, A., Mousavi, S. F., Mostafazadeh-Fard, B., Rostamian, R., & Seraji, M. (2011). Application of some combined adsorbents to remove salinity parameters from drainage water. Desal., 275(1-3), 217-223. DOI: 10.1016/j.desal.2011.03.003.
Alazaiza, M. Y., Albahnasawi, A., Copty, N. K., Bashir, M. J., Nassani, D. E., Al Maskari, T., & Abujazar, M. S. S. (2022). Nanoscale zero-valent iron application for the treatment of soil, wastewater and groundwater contaminated with heavy metals: a review. Desalin. Water Treat., 253, 194-210. DOI: 10.5004/dwt.2022.28302.
Altintig, E., Arabaci, G., & Altundag, H. (2016). Preparation and characterization of the antibacterial efficiency of silver loaded activated carbon from corncobs. Surf. Coat. Tech., 304, 63-67. DOI: 10.1016/j.surfcoat.2016.06.077.
Chen, S., Sun, L., Huang, Y., Yang, D., Zhou, M., & Zheng, D. (2023). Biochar‐based interfacial evaporation materials derived from lignosulfonate for efficient desalination. Carbon Neut. 2(4), 494-509. DOI: 10.1002/cnl2.79.
Farmani, B., Bodbodak, S., & Dadashi, S. (2021). Investigation of sorption isotherm models on remove ability sugar beet dilute molasses impurities using powdered activated carbon. J. Food Sci. Technol., 17(107), 107-118. (In Persian). DOI: 10.52547/fsct.17.107.107.
Ghasemi, M., Abedi koopahi, J., Heidarpoor, M., & Dinari, M. (2018a). Effect of activated carbon produced from pine cones in reducing of irrigation water salinity parameters. Iran. J. Soil Water Res., 48(5), 1097-1107. (In Persian). DOI: 10.22059/ijswr.2017.223400.667599.
Ghasemi, M., Abedi Koupai, J., & Heidarpour, M. (2018b). Application of modified zeolite and modified peat in removing salinity ions from irrigation saline waters. J. Environ. Eng., 144(8), 04018066. DOI: 10.1061/(ASCE)EE.1943-7870.0001409.
Ghanbari Adivi, E., Mehrabinia, P., & Kermannezhad, J. (2020). Investigation of nitrate absorption methods from contaminated waters using biochar. J. Sustain. Dev., 7(1), 79-90. (In Persian). DOI: 10.22067/jwsd.v7i1.81367.
Gholami, S., Shakuri, A., & Raisi, J. (2024). Evaluation of the bioadsorption process of lead heavy metal from aqueous media using two species of Nizimuddinia zanardini brown algae and Ulva rigida green algae. Environ. Water Eng., 10(1), 1-17. (In Persian). DOI: 10.22034/ewe.2023.381628.1838.
Jamoussi, B., Jamoussi, R., Jablaoui, C., & Rhazi, L. (2020). Efficiency of Acacia Gummifera powder as biosorbent for simultaneous decontamination of water polluted with metals. Arab. J. Chem., 13(10), 7459-7481. DOI: 10.1016/j.arabjc.2020.08.022.
Jellali, S., Khiari, B., Usman, M., Hamdi, H., Charabi, Y., & Jeguirim, M. (2021). Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters. Renew. Sustain. Energy Rev., 144, 111068. DOI: 10.1016/j.rser.2021.111068.
Jeon, C., Solis, K. L., An, H. R., Hong, Y., Igalavithana, A. D., & Ok, Y. S. (2020). Sustainable removal of Hg (II) by sulfur-modified pine-needle biochar. J. Hazard. Mater., 388, 122048. DOI:  10.1016/j.jhazmat.2020.122048.
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2020). Investigation of modified biochar performance on nitrate removal from aqueous solution: kinetic and isotherm study. Appl. Soil Res., 8(2), 1-14. (In Persian).
Li, W. B., Deng, H. Y., Ye, Y., Zhou, S. N., Abbas, T., Ouyang, J. M., & Liu, W. (2022). Effect of pH on the adsorptive and cycling performance of amphoteric clay-loaded biochar. Desalin. Water Treat., 264, 111-120. DOI: 10.5004/dwt.2022.28559.
Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3, 255-281. DOI: 10.1007/s42773-021-00101-6.
Liu, Z., Quek, A., Hoekman, S. K., & Balasubramanian, R. (2013). Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 103, 943-949.  DOI: 10.1016/j.fuel.2012.07.069.
Luo, Z., Yao, B., Yang, X., Wang, L., Xu, Z., Yan, X., & Zhou, Y. (2022). Novel insights into the adsorption of organic contaminants by biochar: a review. Chemosphere, 287, 132113. DOI: 10.1016/j.chemosphere.2021.132113.
Moayedi, A., Yargholi, B., Pazira, E., & Babazadeh, H. (2022). Biological desalination of saline and seawater using Dunaliella salina and Cholorella vulgaris algae. Agric. Water Manag., 9(1), 45-56. (In Persian). DOI: 20.1001.1.24764531.1401.9.1.4.5.
Mohanty, P., Nanda, S., Pant, K. K., Naik, S., Kozinski, J. A., & Dalai, A. K. (2013). Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J. Anal. Appl. Pyrolysis., 104, 485-493. DOI: 10.1016/j.jaap.2013.05.022.
Priya, A. K., Gokulan, R., Vijayakumar, A., & Praveen, S. (2020). Biodecolorization of Remazol dyes using biochar derived from Ulva reticulata: isotherm, kinetics, desorption, and thermodynamic studies. Desalin. Water Treat., 200, 286-295. DOI: 10.5004/dwt.2020.26098.
Qiu, B., Shao, Q., Shi, J., Yang, C., & Chu, H. (2022). Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep. Purif. Technol., 121925. DOI: 10.1016/j.seppur.2022.121925.
Rostamian, R., Heidarpour, M., Mousavi, S. F., & Afyuni, M. (2015). Preparation, characterization and sodium sorption capability of rice husk carbonaceous adsorbents. Fresenius Environ. Bull., 24(5), 1649-1658.
Sadeghi, S., Albaji, M., Golabi, M., & BoroomandNasab, S. (2022). Using modified natural zeolite clinoptilolite to remove nitrate, phosphate and salt from agricultural drainage water in a drainage system model. Irrig. Sci. Eng., 45(1), 131-152. (In Persian). DOI: 10.22055/jise.2021.35721.1935.
Sahraei, M., Liaghat, A., & Nazi Ghameshlou, A. (2022). Investigating the Effect of Using Iranian Zeolite and Bentonite in Desalination. J. Water Wastewater: Ab va Fazilab, 32(6), 58-66. (In Persian). DOI:  10.22093/wwj.2021.273711.3117.
Shokrian, F., Solaimani, K., Nematzadeh, G., & Biparva, P. (2020). Comparative Investigation of Bio and Mineral Absorbents on Water Salinity Reduction. J. Environ. Sci. Tech., 22(4), 55-66. (In Persian). DOI: 10.22034/jest.2018.24400.3353.
Yang, H., Ye, S., Zeng, Z., Zeng, G., Tan, X., Xiao, R., & Xu, F. (2020). Utilization of biochar for resource recovery from water: A review. J. Chem. Eng., 397, 125502. DOI: 10.1016/j.cej.2020.125502.
Younis, S. A., El-Salamony, R. A., Tsang, Y. F., & Kim, K. H. (2020). Use of rice straw-based biochar for batch sorption of barium/strontium from saline water: Protection against scale formation in petroleum/desalination industries. J. Clean. Prod., 250, 119442. DOI: 10.1016/j.jclepro.2019.119442.