نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی دانشگاه ارومیه، ارومیه، ایران

2 دانشیار، گروه آبخیزداری دانشکده مرتع و آبخیزداری دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانشیار، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

4 استادیار علوم و مهندسی علوم خاک، دانشگاه کردستان، سنندج، ایران

5 استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، سازمان تحقیقات آموزش و ترویج کشاورزی، مشهد، ایران

چکیده

برای کاهش فرسایش خاک، یکی از مهم‌ترین مسائل، کمّی‌کردن میزان فرسایش و رسوب است تا تصمیم­های صحیحی در راستای مدیریت یکپارچه حوزه‌های آبخیز توسط برنامه‌ریزان گرفته شود. در این پژوهش به‌منظور ارزیابی میزان فرسایش حوزه آبخیز گاوشان از معادله جهانی فرسایش خاک به­صورت سه بعدی و سامانه اطلاعات جغرافیایی و سنجش از دور استفاده شد. در این پژوهش نتایج مدل RUSLE 3D با نتایج مدل RUSLE و مقادیر واقعی مقایسه شد. عامل فرسایندگی باران با استفاده از اطلاعات بارش و فن‌های درون‌یابی محاسبه شد. فرسایش‌پذیری خاک با استفاده از نقشه خاک منطقه به‌دست‌آمد. عامل پوشش زمین با استفاده از شاخص NDVI محاسبه شد. عامل پستی و بلندی نیز با استفاده از مدل رقومی ارتفاع به‌دست‌آمد. تفاوت اصلی مدل RUSLE 3D و مدل RUSLE تفاوت در نحوه محاسبه عامل پستی و بلندی (LS) در مدل RUSLE 3D می‌باشد. نتایج به دست آمده نشان داد که میانگین سالانه فرسایش ton/ha/y 02/5 است. در مطالعات تفصیلی حوزه آبخیز گاوشان میزان فرسایش ton/ha/y 5/4 است. این نتایج نشان می‌دهد مدل RUSLE 3D که عامل پستی و بلندی (LS) در آن اصلاح شده است به خوبی توانسته است فرسایش حوضه را برآورد کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Estimation of Soil Erosion Rate in Gaushan Watershed Using RUSLE 3D Model

نویسندگان [English]

  • Seyed Dana Hesami 1
  • Habib Nazarnejad 2
  • Mahdi Erfanian 3
  • Hirad Abghari 3
  • Mohammad Ali Mahmoodi 4
  • Mohammad Rostami Khalaj 5

1 Ph.D. Alumnus, Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran

2 Assoc. Professor, Department of Watershed Management, Faculty of Range and watershed management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Assoc. Professor, Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran

4 Assist. Professor, Department of Soil Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran

5 Assist. Professor Khorasan Razavi Agriculture and Natural Resources Research and Education Center, AREEO, Mashhad, Iran

چکیده [English]

To reduce soil erosion, one of the most important issues is to quantify the amount of erosion and sediment so that planners can make correct decisions in line with the integrated management of watersheds. In this research, in order to evaluate the rate of erosion in the Gaushan watershed, we used the global equation of soil erosion in three dimensions and the geographic information system and remote sensing. The results of RUSLE 3D model were compared with the results of RUSLE model and real values. The rain erosivity factor was calculated using rainfall data and interpolation techniques. Soil erodibility was obtained using the soil map of the region. Land cover factor was calculated using NDVI index. The LS factor was also obtained using the DEM. The main difference between the RUSLE 3D model and the RUSLE model is the difference in how to calculate the LS factor in the RUSLE 3D model. The obtained results showed that the annual average erosion is 5.02 ton/ha/y. In the detailed studies of Gaushan watershed, the rate of erosion is 4.5 ton/ha/y. These results show that the RUSLE 3D model, in which the LS factor has been modified, has been able to estimate the basin erosion well.

کلیدواژه‌ها [English]

  • Geographic Information System
  • Gaushan
  • NDVI
  • RUSLE 3D
Allafta, H., & Opp, C. (2022). Soil Erosion Assessment Using the RUSLE Model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran). Appl. Sci.12, 7776. DOI: 10.3390/app12157776.
Amini, A., Karami Moghadam, M., Sedri, M. H., & Kazemi, S. (2022). Determining the Erosion and Sedimentation Using MPSIAC Model and GIS System in Khorkhoreh Watershed, Kurdistan, Iran. Iran. J. Remote Sens. GIS14(4), 87-102. DOI: 10.52547/gisj.14.4.87. [In Persian].
Anderson, G. L., Hanson, J. D., & Hass, R. H. (1993). Evaluating Landsat thematic mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sens. Environ., 45(2): 165-175. DOI: 10.1016/0034-4257(93)90040-5.
Ansari Lari, A., & Ansari, M. (2017). Examining the Usage of GIS in Estimating Soil Erosion and Sediment Yield Using RUSLE Model (Case study: Ghale chay Basin, Iran). J. Geogr. Region. Develop.14(2), 155-173. DOI: 10.22067/geography.v14i2.54607. [In Persian].
Alexakis, D. D., Hadjimitsis, D. G. & Agapiou, A. (2013). Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of Yialias in Cyprus. Atmos. Res., 131: 108-124. DOI: 10.1016/j.atmosres.2013.02.013.
Babaei, M., Hoseini, S. Z., Nazari samani, A. & Almodaresi, S. A. (2016). Assessment of soil erosion using RUSLE 3D, case study: Kan ‎Watershed. J. Watershed Eng. Managet., 8(2), 165-181. DOI: 10.22092/ijwmse.2016.106454 [In Persian].
Bedoui, Ch. (2019). Predicting water erosion in arid lands using the GIS-based RUSLE model: A case study of Bedour catchment, central Tunisia. J. Water Land Develop., 40 (I–III), 59–66. DOI:  10.2478/jwld-2019-0006.
Blake, G. R., & Hartge, K. H. (1986). Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. DOI: 10.2134/agronmonogr9.2.2ed.
Cabrera, L., Molero, G., Stellacci, A. M., Bort, J., Nogues, S. & Araus, J. L. (2010). NDVI as a Potential Tool for Predicting Biomass, Plant Nitrogen Content and Growth in Wheat Genotypes Subjected to Different Water and Nitrogen Conditions.  Cereal Res. Comm., 39(1), 147–159. DOI: 10.1556/CRC.39.2011.1.15.
Damene, S. & Satyal, P. (2023). Soil Erosion estimation using revised universal soil loss equation integrated with geographic information system by different resolution digital elevation model Data in Weyto Sub-Basin, Southern EthiopiaSINET: Ethiop. J. Sci., 46(1). DOI: 10.4314/sinet.v46i1.1
Gandhi, G. M., Parthiban, B. S., Thummalu, N., & Christy, A. (2015). Ndvi: Vegetation change detection using remote sensing and gis–A case study of Vellore District. Procedia Comput. Sci.57, 1199-1210. DOI:10.1016/J.PROCS.2015.07.415
García, J. L. & Giménez, M. C. (2012). Methodology for estimating the topographic factor LS of RUSLE3D and USPED using GIS. Geomorph., 175-176: 98-106. DOI: 10.1016/j.geomorph.2012.07.001
 Gyeltshen, S., Adhikari, R., Bahadur Budha, P., Thapa, G., Kumar Subedi, K., & Kumar Singh, B. (2022). Remote Sensing and GIS based Soil Loss Estimation for Bhutan, using RUSLE model. Geocarto Int.37(21), 6331-6350. DOI: 10.1080/10106049.2021.1936210.
Helmi, A. (2023). Quantifying catchments sediment release in arid regions using GIS-based Universal soil loss equation (USLE). Ain Shams Eng. J., 14(8), 102038. DOI: 10.1016/j.asej.2022.102038.
Mezbani, M., Rezaei Moghadam, M., & Hejazi, A. (2021). Assessment of soil erosion risk in land uses using Revised Universal Soil Loss Equation (Case Study: Sikan Basin). J. Geogra. Environ. Hazard.10(1), 41-63. DOI:  10.22067/GEOEH.2021.67238.0
Jetten, V., Govers, G. & Hessel, R. (2003). Erosion models: quality of spatial predictions. Hydrol. Process., 17: 887-900. DOI: 10.1002/Hyp.5519.
Kaffas, K., Pisinaras, V., Al Sayah, M. J., Santopietro, S., & Righetti, M. (2021). A USLE - based model with modified LS-factor combined with sediment delivery module for Alpine basins. Catena207, 105655. DOI:  10.1016/j.catena.2021.105655.
Khosraviaqdam, K., Momtaz, H. R. & Nazarnejad, H. (2019). Estimation of soil erodibility factor of USLE model and its relation to landscape features in some parts of Nazlou-Chai Basin, Iran. Appl. Soil Res., 7(1):31-43. DOI: magiran.com/p1993905. [In Persian].
Klute, A., & Dirksen C. (1986). Hydraulic conductivity & diffusivity: Laboratory methods. P.687-734. In A. Klute (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. DOI: 10.2136/sssabookser5.1.2ed.c28.
Mahmoodi, M. A. & Naqshbandi, P. (2019). Estimation of soil erosion by RUSLE and remote sensing data of Gawshan Dam Basin. J. Water Soil. 33(6): 845-856. DOI: 10.22067/JSW.V33I6.76446. [In Persian].
Merritt, W., Letcher, R. & Jakeman, A. (2003). A review of erosion and sediment transport models. Environ. Model. Software, 18, 761-799. DOI: 10.1016/S1364-8152(03)00078-1.
Mitasova, H., Hofierka, I., Zlocha, M. & Iverson, L. R. (1996). Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogra. Inform. Sys., 10: 629-641. DOI: 10.1080/02693799608902101.
Moore, I. & Wilson, P. (1992). Length Slope Factor for the revised universal soil loss equation: simplified method of solution, J. Soil Water Conser., 47(4): 423-428. DOI: 10.1016/j.iswcr.2018.01.001.
Nazarnejad, H., Shahhosein, T. & Asadzade, F. (2018). Spatiotemporal Variations of the Rainfall Erosion in West Azerbaijan Province. Geogra. Environ. Sustain., 27, 89-99. DOI: https://sid.ir/paper/221145/fa. [In Persian].
Puget, P., Chenu, C. & Balesdent, J. (1995). Total and young organic matter distributions in aggregates of silty cultivated soils. Europ. J. Soil Sci., 46: 449–459. DOI: 10.1111/j.1365-2389.1995.tb01341.x
 Renard K. G. & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol., 157: 287-306. DOI: 10.1016/0022-1694(94)90110-4.
Shahhossein, T., Nazarnejad, H., & Asadzadeh, F. (2021). Rainfall Erosivity Mapping for West Azerbaijan Province. Appl. Soil Res., 9(4): 49-61. DOI: https://sid.ir/paper/221145/en. [In Persian].
Rahmani, M., Hadian, M., & Molaaghajanzade, S. (2006). Using satellite data and geographic information system in estimating erosion and sedimentation using the MPSIAC model (case study: Sharafkhaneh-Shabestar watershed). National Erosion and Sedimentation Conference. DOI: https://sid.ir/paper/813802/fa. [In Persian].
Usman, K., Deribew, K. T., Alemu G., & Hailu, S. (2023). Spatial modeling of soil loss as a response to land use-land cover change in Didessa sub-basin, the agricultural watershed of Ethiopia. J. Heliyon. Heliyon 9 e14590. DOI: 10.1016/j.heliyon.2023.e14590.
Wang, X.H., & Bao, Y. H. (1999). Study on the methods of land use dynamic change research. Prog. Geogra., 18: 81–87. DOI: 10.11820/dlkxjz.1999.01.012.
Wischmeier, W. H., & Smith D. D. (1978). Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Science and Education Administration, USDA.
Wu, L., Peng, M. L., Qiao, S. S. & Ma, X. Y. (2018). Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil. Environ. Sci. Pollut. Res., 25, 3480-3487. DOI: 10.1007/s11356-017-0713-8.
Yesuph, A. Y. & Dagnew, A. B., (2019). Soil erosion mapping and severity analysis based on RUSLE model and local catchment of the Blue Nile Basin, Ethiopia. Environ. Syst. Res., 8(17), 1-21. DOI: 10.1186/s40068-019-0145-1.