نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، پژوهشکده فراوری مواد معدنی، جهاد دانشگاهی، تهران، ایران

2 استادیار، پژوهشکده فراوری مواد معدنی، جهاد دانشگاهی، تهران، ایران

چکیده

استفاده مجدد از پساب در بسیاری از صنایع و کشاورزی به‌منظور مدیریت منابع آبی رایج شده است. هدف از این پژوهش بررسی امکان استفاده مجدد پساب تصفیه‌شده با رویکرد استحصال آب صنعتی و کشاورزی است که از روش تلفیقی راکتور بی‌هوازی و IFAS در مقیاس پایلوت برای تصفیه پساب استفاده شد. متغیرهای مؤثر شامل کارایی سامانه در حذف COD، BOD و TSS، تغییرات pH و زمان‌های ماند هستند. سازگاری میکروارگانیسم‌ها در تشکیل بیوفیلم برای رسیدن به حالت پایدار در سیستم IFAS حداکثر در day 35 اتفاق افتاد. بعدازآن تغییر محسوسی در بازدهی حذف COD مشاهده نشد. HRT بهینه یک day بی‌هوازی hr 4 هوازی بود. بیشینه بازدهی حذف COD با day 2 بی‌هوازی hr 8 هوازی % 71/88، BOD با day 3 بی‌هوازی hr 8 هوازی % 11/92 و TSS با day 2 بی‌هوازی hr 8 هوازی % 90/97 در سیستم مشاهده شد. بر اساس روش ویلکاکس پساب خروجی جزء آب‌های متوسط بوده و برای آبیاری مناسب است. pH پساب خروجی نشان از قابلیت کاربرد کشاورزی آن دارد. بر اساس نتایج حاصله، پساب تصفیه‌شده با کیفیت متوسط قابلیت استفاده در کشاورزی، صنعتی و آبیاری را داشته و با کیفیت ضعیف در خنک‌کننده‌ها می‌توان از آن استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Treatment of Industrial Wastewater Using an Integrated Anaerobic Reactor and Fixed-Film Activated Sludge (IFAS) System

نویسندگان [English]

  • Abdoullah Samiee Bayragh 1
  • Mohammad Meshkini 1
  • Mehdi Zakeri Khatir 2

1 Lecturer, Mineral Processing Research Institute, Tehran, Iran

2 2Assist. Professor, Mineral Processing Research Institute, Tehran, Iran

چکیده [English]

Wastewater reuse has become a common practice in many industries to manage water resources effectively. The objective of this research was to investigate the possibility of reusing treated wastewater from the Urmieh 2 industrial state an integrated approach combining industrial and agricultural water harvesting. In this study, a pilot-scale IFAS system was used for wastewater treatment, which included an anaerobic reactor. The effective parameters evaluated included efficiency in removing COD, BOD, TSS, pH and HRT. The adaptation of microorganisms in biofilm formation to reach a stable state in the IFAS occurred within a maximum of 35 days. After this period, no noticeable change in COD removal efficiency was observed. The optimal HRT for anaerobic reactor was 1 day with 4 hr of aerobic activity. The highest removal efficiencies of COD, BOD and TSS, respectively, were observed with HRTs of 2 days anaerobic and 8 hr aerobic 88.71%, 3 days anaerobic and 8 hr aerobic 92.11%, and 2 days anaerobic and 8 hr aerobic 97.90%. According to the Wilcox classification, the effluents from the process are categorized as medium-quality waters and are suitable for irrigation purposes. The output pH values indicate that the treated wastewater can also be used in agricultural applications.

کلیدواژه‌ها [English]

  • Effluent
  • IFAS System
  • Industrial Water
  • Reuse
  • Treated Wastewater
Anonymous, (2009). Guidelines for quality lassification of raw water, effluent, and reused water for industrial and recreational use. Office of Deputy for Strategic Supervision Ministry of Energy.
Asano, T., Joseph, A., & Cotruvob, C. (2004). Groundwater recharge with reclaimed municipal wastewater, health and regulatory considerations. Water Res., 38: 1941-1951
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. FAO Irrigation and Drainage, Food and Agriculture Organization, Rome.
Azimi, A., Mehrdadi, N., Babi, B. G. R., & Houshyari, B. (2007). Enhanced COD and nutrient removal efficiency in a hybrid integrated fixed film activated sludge process. Iran. J. Sci. Technol. Trans. B: Eng., 31(5), 523-533.
Azimi, E., & William, A. T. (2010). Industrial Wastewater Treatment. Tehran Industrial Estates Company Publication, 2 [in Persian].
Chalampol, J., Nuttapon, P., Tanakarn, M., Aran, I., & Pichaya, I. (2022). Advancement on mixed microalgal-bacterial cultivation systems for nitrogen and phosphorus recoveries from wastewater to promote sustainable bioeconomy. Biotechnol., 360, 198-210. DOI: 10.1016/j.jbiotec.2022.11.008
Daee, M., Alizadeh, A., Farid Hosseini, A., & Rashidi, A. M. (2016). Evaluation of Performance and Optimization of Horizontal Roughing Filter (HRF) to Reduce Turbidity and Suspended Solids from the Wastewater Treatment Plant Outflow for Agriculture Use. Iran. Irrig. Drain. J., 11 (2), DOI: 681-472-990-954 [in Persian].
Deng, Y., Bing, L., Ke, Y., & Tong, Z. (2016). Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects. Sci. Total Environ., 544, 980-986. DOI: 10.1016/j.scitotenv.2015.12.010
Djade, P. J. O., Keumean, K. N., Traore, A., Soro, G., & Soro, N. (2021). Assessment of Health Risks Related to Contamination of Groundwater by Trace Metal Elements (Hg, Pb, Cd, as and Fe) in the Department of Zouan-Hounien (West Côte d’Ivoire). J. Geosci. Environ. Protect., 9, 189-210. DOI: 10.4236/gep.2021.98013
Falahati, H. M., Karimi, A. J., & Rakhshandaro, G. (2016). Effect of HRT on performance of membrane bioreactor in urban wastewater treatment. Water Wastewater, 28(4), 93-102, DOI: 10.22093/wwj.2017.45876 [in Persian].
Hashemi, M., Rezaee, A., & Hossini, H. (2015). Assessment of national sanitation foundation water quality index and other quality characterization of Mamloo dam and supporting streams. Int. J. Environ. Eng., 4(3), 1-7. DOI: 10.4103/2277-9183.170711
Jabari, P., Munz, G., & Oleszkiewicz, J. A. (2014). Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor. Chemosphere, 109, 20-27. DOI: 10.1016/j.chemosphere.2014.03.002
Jalili, F. (2017). Effect of salinity and sodium absorption ratio (SAR) of irrigation water on yield and ion ratios in two cultivars of rapeseed (Brassica napus L). Electron. J. Soil Manage. Sustain. Product., 8, (1), 175-182, DOI: 10.22069/ejsms.2018.13470.1751 [in Persian].
Kiranmai, D., Jyothirmai, A., & Murty, C.V.S. (2005). Determination of kinetic parameters in fixed-film bio-reactors: an inverse problem approach. Biochem. Eng. J., 23, 73–83. DOI: 10.1016/j.bej.2004.10.005
Kube, M., Fan, L., Roddick, F., Whitton, R., Pidou, M., & Jefferson, B. (2022). High rate algal systems for treating wastewater: A comparison. Algal Res., 65, 102754. DOI: 10.1016/j.algal.2022.102754
Liu, Q., Zhao, Z., Li, H., Su, M., & Liang, S.-X. (2021). Occurrence and removal of organic pollutants by a combined analysis using GC-MS with spectral analysis and acute toxicity. Ecotoxic. Environ. Safe., 207, 111237. DOI: 10.1016/j.ecoenv.2020.111237
Malovanyy, A., Trela, J., & Plaza, E. (2015). Mainstream wastewater treatment in integrated fixed film activated sludge (IFAS) reactor by partial nitritation/anammox process. Bioresour. Technol., 198, 478-487. DOI: 10.1016/j.biortech.2015.08.123
Monazami Tehrani, G., Borgheipour, H., & Nezampour, A. (2020). Reuse of Varamin Vegetable Oils Industry Wastewater by Using IFAS Method. Env. Sci. Tech., 22(2), DOI: 10.22034/jest.2018.35075.4216 [in Persian].
Mustafaei, F. (2006). Investigating the performance of integrated fixed bed activated sludge system (IFAS) in removing nutrients from wastewater. 10th National Environmental Health Conference, DOI: 10.22034/jest.2018.35075.4216 [in Persian].
Nakayama, F. S., & Bucks, D. A. (1991). Water quality in drip/trickle irrigation: A review. Irrig. Sci., 12. DOI: 10.1007/BF00190522
Santos, A. D., Martins, R. C., Quinta-Ferreira, R. M., & Castro, L. M. (2020). Moving bed biofilm reactor (MBBR) for dairy wastewater treatment. Energy Report., 6, 340-344. DOI: 10.1016/j.egyr.2020.11.158
Selvabharathi Gopal, S., Robert Ravi, S., & Chinna, E. (2022). Treatment of dairy wastewater by using moving bed biofilm reactor sequential with integrated fixed-film sludge. Innov. Res. Technol., 8(10)
Shabir, G., Afzal, M., Tahseen, R., Iqbal, S., Khan, Q. M., & Khalid, Z. M. (2013). Treatment of oil refinery wastewater using pilot scale fed batch reactor followed by coagulation and sand filtration. Am. J. Environ. Protect., 1, 10-13. DOI: 10.12691/env-1-1-2
Shakeri, N., Amooey, A. A., Amoei, A., & Tahmasebizadeh, M. (2021). Evaluation of an Anaerobic/Aerobic System for Reactive Black 5 Removal: Kinetic Study. Iran. J. Chem. Chem. Eng., 40(5). DOI: 10.30492/ijcce.2020.43235
Sharjeel, W., & others. (2020). Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. J. Environ. Manage., 288. DOI: 10.1016/j.jenvman.2020.110718
Shiva Kumar, B.,  & Venkateswarlu. Ch. (2014). Inverse Modeling Approach for Evaluation of Kinetic Parameters of a Biofilm Reactor Using Tabu Search. Water Environ. Res., 68(8), 675-686. DOI: 10.2175/106143014X13975035525708
Talebi, B., Sajjadi, N., & Sharmad, T. (2017). Evaluation of Drinking and Agricultural Water Quality in the North of Qazvin Plain's Springs, Res. J. Marine Sci. Tech., 12(2), 1-16, DOI: 20.1001.1.17352347.1399.16.3.11.9 [in Persian].
Trojanowicz, K., Trela, J., & Plaza, E. (2021). Possible mechanism of efficient mainstream partial nitritation/anammox (PN/A) in hybrid bioreactors (IFAS). Environ. Technol., 42(7). DOI: 10.1080/09593330.2019.1650834