نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه علوم و مهندسی محیط زیست، دانشکده علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران

2 دانشیار، گروه علوم و مهندسی محیط‌زیست، دانشکده علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

رودخانه­ها که تمرکز گسترده­ای از فعالیت­های بشر روی آنها وجود دارد، پذیرنده حجم وسیعی از آلودگی­ها می­باشند. هدف از این پژوهش، پایش و مدل­سازی کیفی آب رودخانه اترک در حوزه جغرافیایی بجنورد و بررسی اثر منابع آلوده­کننده در مسیر رودخانه با استفاده از مدل QUAL2KW می­باشد. پس از بازدید میدانی، محدوده مطالعاتی به طول km 33 با 16 بازه، 11 ایستگاه نمونه­­برداری اصلی، 10 ایستگاه نمونه­­برداری منابع نقطه­ای، و 2 ایستگاه نمونه­برداری منابع غیر­نقطه ای مشخص شد. در این مطا­لعه چهار پارامتر کیفی دما، اکسیژن محلول (DO)، اکسیژن­خواهی بیوشیمیایی (BOD)، و اکسیژن­خواهی شیمیایی (COD) در بهار سال 1401 اندازه­گیری و شبیه­سازی شد. داده­های هندسی- هیدرولیکی، داده­های کیفی و داده­های هواشناسی وارد مدل QUAL2KW شد. خطای شبیه­سازی با استفاده از میانگین خطای مطلق (AME)، درصد میانگین خطای مطلق (%MAPE) و درصد خطای جذر میانگین مربعات (RMSE) محاسبه شد. خطای جذر میانگین مربعات برای پارامترهای دما، DO، BOD و COD به ترتیب 68/3، 51/4، 5/6 و 47/4 تعیین شد. با توجه به میزان خطاهای محاسبه شده، مدل QUAL2KW از دقت بسیار مطلوبی در شبیه­سازی کیفی رودخانه اترک برخوردار بوده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling Effect of Different Pollutant Sources on Water Quality of Atrak River Using QUAL2KW Model

نویسندگان [English]

  • Mohammad Mirnezhad 1
  • Ghasem Zolfaghari 2

1 M.Sc. Alumnus, Department of Environmental Sciences and Engineering, Faculty of Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran

2 Assoc. Professor, Department of Environmental Sciences and Engineering, Faculty of Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran

چکیده [English]

Rivers, where there is a large concentration of human activities, receive a large amount of pollution. The purpose of this study was to monitor and model the water quality of the Atrak River in the geographical area of ​​Bojnurd and to investigate the effect of polluting sources on the river using the QUAL2KW model. After the field visit a study area of ​​33 km length, with 16 reaches, 11 main sampling stations, 10 sampling stations of point sources, and 2 sampling stations of non-point sources were selected and specified. In this study, four qualitative parameters of temperature, Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD) were measured and simulated in the spring of 2022. Hydraulic geometric data, qualitative data and meteorological data were entered into the QUAL2KW model. The simulation error was calculated using Absolute Mean Error (AME), Mean Absolute Percentage Error (%MAPE), and Root Mean Squared Error (%RMSE). The RMSE for temperature, DO, BOD and COD parameters was determined as 3.68, 4.51, 6.5, and 4.47, respectively. According to the amount of calculated errors, it was found that the QUAL2KW model had a very good accuracy in the qualitative simulation of Atrak River.

کلیدواژه‌ها [English]

  • Atrak River
  • Point and Nonpoint Sources
  • QUAL2KW Model
  • Water Pollution Modeling
Albuquerque, M. T. D., Antunes, I. M. H. R., Oliveira, N. P., & Pelletier, G. (2019). Impact of sewage effluent discharges prediction using QUAL2Kw in a sensitive protected area Portugal. SN Appl. Sci., 1(10), 1–8. DOI: 10.1007/s42452-019-1095-y
Almeida, P., Albuquerque, T., Antunes, M., Ferreira, A., & Pelletier, G. (2021). Effects of wastewater treatment plant’s discharges on a freshwater ecosystem—a case study on the Ramalhoso river (Portugal). Water Air Soil Pollut., 232(5), 1–11. DOI: 10.1007/s11270-021-05131-1
Angello, Z. A., Behailu, B. M., & Tränckner, J. (2021). Selection of optimum pollution load reduction and water quality improvement approaches using scenario basedwater quality modeling in little akaki river, Ethiopia. Water, 13(5), 584. DOI: 10.3390/w13050584
Aryaee Nezhad, R., Sarai Tabrizi, M., & Babazadeh, H. (2019). Modeling water quality of rivers using QUAL2KW model (case study: Shahroud river). J. Env. Sci. Tech., 21(7), 1-13 [In Persian]. DOI: 10.22034/jest.2018.30267.3894
Atabati, A., Adab, H., Zolfaghari, G., & Nasrabadi, M. (2022). Modeling groundwater nitrate concentrations using spatial and non-spatial regression models in a semi-arid environment. Water Sci. Eng., 15(3), 218-227. DOI: 10.1016/j.wse.2022.05.002
Babamiri, O., Vanaei, A., Guo, X., Wu, P., Richter, A., & Ng, K. T. W. (2021). Numerical simulation of water quality and self-purification in a mountainous river using QUAL2KW. J Environ. Informatics., 37(1), 26–35. DOI: 10.3808/jei.202000435
Ben Moussa, A., Chandoul, S., Mzali, H., Bel Haj Salem, S., Elmejri, H., Zouari, K., Hafiane, A., & Mrabet, H. (2021). Hydrogeochemistry and evaluation of groundwater suitability for irrigation purpose in the Mornag region, northeastern Tunisia. Environ. Dev. Sustain., 23(2), 2698–2718. DOI: 10.1007/s10668-020-00696-z
Chanasyk D. S., Mapfumo E., Willms W. D., & Naeth, M. A. (2004). Quantification and simulation of soil water on grazed fescue watersheds. J. Range Manage., 57, 169 -177. DOI: 10.2111/1551-5028(2004)057[0169:QASOSW]2.0.CO;2
Chapra, S., & Pelletier, G. (2003). A modeling framework for simulating river and stream water quality: Documentation and users manual, report. Civ Environ Eng Dep, Tufts Univ, Medford, Mass.
Darajati Setiawan, A., Widyastuti, M., & Pramono Hadi, M. (2018). Water quality modeling for pollutant carrying capacity assessment using QUAL2KW in Bedog river. Indones J Geogr., 50(1), 49–56. DOI: 10.22146/ijg.16429
Emami Qara, F. (2018). Investigating and simulating the process of quality changes in Necarod using the QUAL2KW model. University of Agricultural Sciences and Natural Resources, Faculty of Agricultural Engineering Sari (Iran).
Esmaili Sari, A., Zolfaghari, G., Ghasempouri, S. M., Shayegh, S. S, & Hasani Tabatabei, M. (2007). Effect of age, gender, years of practice, specialty and number of amalgam restorations on mercury concentration in nails of dentists practicing in Tehran. J. Iran. Dent. Assoc., 19(1), 97-104 [in Persian].
Fan, C., Chen, K. H., & Huang, Y. Z.  (2021). Model-based carrying capacity investigation and its application to total maximum daily load (TMDL) establishment for river water quality management: A case study in Taiwan. J. Clean Prod., 291 (1), 125-251. DOI: 10.1016/j.jclepro.2020.125251
Ferreira, D. C., Graziele, I., Marques, R. C., & Gonçalves, J. (2021). Investment in drinking water and sanitation infrastructure and its impact on waterborne diseases dissemination: The Brazilian case. Sci. Total Environ., 779. DOI: 10.1016/j.scitotenv.2021.146279
Ghorbani, Z., Amanipoor, H., & Battaleb-Looie, S. (2020). Water quality simulation of Dez river in Iran using QUAL2KW model. Geocarto Int., 37(4), 1126-1138. DOI: 10.1080/10106049.2020.1762763
Giri, A., Bharti, V. K., Kalia, S., Arora, A., Balaje, S. S., & Chaurasia, O. P. (2020). A review on water quality and dairy cattle health: a special emphasis on high-altitude region. Appl Water Sci., 10(3). DOI:10.1007/s13201-020-1160-0
Kannel, P. R., Lee, S., Lee, Y. S., Kanel, S. R., & Pelletier, G. J. (2007). Application of automated QUAL2Kw for water quality modeling and management in the Bagmati river, Nepal. Ecol Modell., 202(3–4), 503-517. DOI: 10.1016/j.ecolmodel.2006.12.033
Lestari, S., Arfiati, D., Masrevaniah, A., & Sholichin, M. (2019). Study of carrying capacity of Karang Mumus River using the QUAL2KW Program. Int. J. Agric. Environ. Sci., 6(6), 67–72. DOI: 10.14445/23942568/IJAES-V6I6P110
 Mohammadi, M., Qaderi, K., & Ahmadi, M. M. (2019). Performance evaluation of the water cycle optimizing algorithm for calibration of QUAL2KW Model. Iran J. Soil. Water. Res., 50(4), 911-920 [in Persian]. DOI: 10.22059/IJSWR.2018.252649.667853
Mulvaney K. K., Merrill H. N., & Mazzotta, J. M. (2020). Sense of place and water quality: applying sense of place metrics to better understand community impacts of changes in water quality. Water Qual - Sci Assessments Policy., DOI: 10.5772/intechopen.91480
Pelletier, G., & Chapra, S. (2008). QUAL2KW user manual (version 5.1) A modeling framework for simulating river and stream water quality. Washington.
Ranjith, S., Shivapur, A. V., Kumar, P. S. K., Hiremath, C. G., & Dhungana, S. (2019). Utilization of water quality modeling and dissolved oxygen control in river Tungabhadra, Karnataka (India). OALib. J., 6(5), 1–17. DOI: 10.4236/oalib.1105397
Saily, R., & Setiawan, B. (2021). Determination of carrying and load capacity using QUAL2KW modeling simulation. IOP Conf. Ser. Earth Environ. Sci., 737(1). DOI: 10.1088/1755-1315/737/1/012022
Salam, M. A., Kabir, M. M., Yee, L. F., Rak, A. E., & Khan, M.S. (2019). Water quality assessment of Perak river. Malaysia Pollution., 5(3), 637–48. DOI: 10.22059/poll.2019.274543.570
Shi, X., Wang, Y., Jiao, J. J., Zhong, J., Wen, H., & Dong, R. (2018). Assessing major factors affecting shallow groundwater geochemical evolution in a highly urbanized coastal area of Shenzhen City, China. J. Geochemical Explor., 184, 17–27. DOI: 10.1016/j.gexplo.2017.10.003
Tran, C. N., Yossapol, C., Tantemsapya, N., & Kosa, P. (2022). Water quality simulation and dissolved oxygen change scenarios in lam Takhong river in Thailand. J. Sustain. Dev. Energy Water Environ. syst., 10(1), 1–13. DOI: 10.13044/j.sdewes.d9.0389
Tran, H. D., Le, H.V., Tran, H. D. M., & Nguyen, Q. D. (2020). Forecast on water quality of To Lich river based by scenes of Ha Noi sewerage planning by model QUAL2KW. Vietnam J. Sci. Technol., 58(3A), 75. DOI:10.15625/2525-2518/58/3A/14269
Vichotama, R., Haribowo, R., & Prayogo, T. B. (2021). Water quality analysis at Tukad Badung, Denpasar, Bali Using the QUAL2KW program. Jurnal Teknologi dan Rekayasa Sumber Daya Air, 1(1), 40-51. DOI: 10.21776/ub.jtresda.2021.001.01.04
Zhenyang, Q. (2022). Evaluations of the environmental effects of controlled tile drainage on watershed and river using the improved SWAT and the QUAL2Kw under current and future climate regimes.  University Ottawa.
Zolfaghari, G. (2018a). Risk assessment of mercury and lead in fish species from Iranian international wetlands. MethodsX, 5, 438–447. DOI: 10.1016/j.mex.2018.05.002
Zolfaghari, G., Akhgari Sang Atash, Z., & Sazgar, A. (2018b). Baseline heavy metals in plant species from some industrial and rural areas: Carcinogenic and non-carcinogenic risk assessment. MethodsX, 5, 43-60. DOI:  10.1016/j.mex.2018.01.003
Zolfaghari, G., Delsooz, M., & Rajaee, S. (2016). Study of mercury pollution in water, sediments, and fish from Hamoon international wetland. J. Water Wastewater, 27(5), 25-37 [in Persian].
Zolfaghari, G., Esmaili Sari, A., Ghasempouri, S. M., Ghorbani, F., Ahmadifard, N., & Shokri, N. (2006). Relationship beetween age, gender and weight with mercury concentration in different organs of Chalcalburnus chalcalburnus from Anzali wetland. Iran. J. Mar. Sci. Technol., 5(3-4), 23-31 [in Persian]. 
Zolfaghari, G., Esmaili-Sari, A., & Younesi, H. (2011). Surface modification of ordered nanoporous carbons CMK-3 via a chemical oxidation approach and its application in removal of lead pollution from water. Proceedings of the 2nd International Conference on Environmental Science and Technology, IPCBEE, 6, 174-178.
Zolfaghari, G., & Kargar, M. (2019). Nanofiltration and microfiltration for the removal of chromium, total dissolved solids, and sulfate from water. MethodsX, 6, 549–557. DOI: 10.1016/j.mex.2019.03.012