نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه زیست شناسی دریا، دانشکده علوم دریایی،دانشگاه دریانوردی و علوم دریایی چابهار، چاربهار، ایران

2 دانشیار گروه زیست شناسی دریا، دانشکده علوم دریایی،دانشگاه دریانوردی و علوم دریایی چابهار، چاربهار، ایران

3 مربی، گروه زیست دریا، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار، چاربهار، ایران

چکیده

در این پژوهش اقدام به بررسی فرآیند جذب زیستی فلزسنگین سرب با استفاده از جلبک‌های قهوه‌ای Nizimuddinia zanardini و جلبک سبز Ulva rigida شد. شرایط بهینه جذب با سنجش میزان pH؛ مقدار بهینه جاذب؛ زمان بهینه و غلظت بهینه یون فلزی سرب بررسی شد. برای بررسی جذب سطحی، از ایزوترم‌های لانگمویر، فروندلیچ و تمکین استفاده شد. سینتیک جذب هم مطابق معادله‌های سینتیک شبه درجه یک و دو بررسی شد. در بررسی نتایج pH مشخص شد که در جذب سرب، جلبک قهوه‌ای در pH برابر با 5 و جلبک سبز در pH برابر با 6 توانسته است به حداکثر جذب برسد. در بررسی نتایج مرتبط با زمان مشخص شد که برای هر دو جلبک بهترین زمان جذب در min 60 بود. نتایج مقدار دوز جاذب نشان داد که دو جاذب زیستی جلبک قهوه‌ای و سبز به ترتیب در مقدار g 5/0 و 7/0 بیشترین مقدار جذب را دارند و در غلظت اولیه یون فلزی، بیشترین مقدار در مقدار mg/l 2 حاصل شد. نتایج مدل ایزوترم هم نشان داد که جذب سرب توسط جلبک قهوه‌ای با ایزوترم لانگمویر و جلبک سبز با ایزوترم فروندلیچ مطابقت دارد. همچنین مطابق نتایج، هر دو جذب از سینتیک درجه دوم تبعیت می‌کنند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Bioadsorption Process of Lead Heavy Metal from Aqueous Media Using Two Species of brown Nizimuddinia zanardini algae and Ulva rigida Green Algae

نویسندگان [English]

  • Samineh Gholami 1
  • Arash Shakouri 2
  • Jasem Raesi 3

1 M.Sc. Student, Department of Marine Biology, Faculty of Marine Sciences, Chabahar Maritime and Marine Sciences University, Chabahar, Iran

2 Assoc. Professor, Department of Marine Biology, Faculty of Marine Sciences, Chabahar University of Maritime and Marine Sciences, Chabahar, Iran

3 Lecturar, Department of Marine Biology, Faculty of Marine Sciences, Chabahar University of Maritime and Marine Sciences, Chabahar, Iran

چکیده [English]

In this research, the biological adsorption process of lead heavy metal was investigated using brown algae Nizimuddinia zanardini and green algae Ulva rigida. Optimum adsorption conditions by measuring pH, the amount of adsorbent, time, and the concentration of lead ion were investigated. Langmuir, Freundlich, and Temkin isotherms were used to investigate surface adsorption. Adsorption kinetics were investigated according to pseudo-first and second-order kinetic equations. Examining the pH results, it was found that brown algae at pH = 5 and green algae at pH = 6 could reach the maximum adsorption of lead. Examining the time-related results, it was found that the best adsorption time for both algae was 60 min. The results of the adsorbent dosage showed that the two bioadsorbents of brown and green algae have the highest amount of adsorption in the amounts of 0.5 and 0.7 g, respectively, and in the initial concentration of metal ions, the highest efficiency was obtained in the dosage of 2 mg/l. The results of the isotherm model showed that lead adsorption by brown algae corresponds to the Langmuir isotherm and green algae to the Freundlich isotherm. Also, according to the kinetic results, both adsorptions follow second-order kinetics.

کلیدواژه‌ها [English]

  • Bioabsorption
  • Heavy metals
  • Lead
  • Nizimuddinia zanardini
  • Ulva rigida
Ahmadi-Asbchin, S., & Jaffari, N. (2014). Performance of dead Fucus serratus biomass in binary biosorption of Cd(II) and Ni(II) from aquatic habitat. Nova Bio. Reperta, 1(1), 45-55 [in Persian] DOI: 10.29252/nbr.1.1.45
Ahmadpari, H., Nasehi Peykani, T., Afarinandeh, A., Noroozian, A., & Kabiri, F. (2020). Removal of Pb(II) ions from aqueous solution using leaves of Palm trees. J. Adv. Pharm. Edu. Res., 10(4), 135-139.
Al-Dhabi, N.A., & ValanArasu, M. (2022). Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. Environ. Res., 204(3), 1112-1126. DOI: 10.1016/j.envres.2021.112115
Al-Homaidan, A. A., Al-Ghanayem, A A., Al-Qahtani, H. S., Al-Abbad, A. F., Alabdullatif, J. A., Alwakeel, S. S., & Ameen, F. (2020). Effect of sampling time on the heavy metal concentrations of brown algae: A bioindicator study on the Arabian Gulf coast. Chemosphere., 263(5), 15-30. DOI: 10.1016/j.chemosphere.2020.127998
Almomani, F., & Bhosale, R. R. (2021). Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: Application of isotherm, kinetic models and process optimization. Sci. Total Environ., 755, 2, 142654. DOI: 10.1016/j.scitotenv.2020.142654
Awual, M. R. (2019). Mesoporous composite material for efficient lead(II) detection and removal from aqueous media. J. Environ. Chem. Eng., 7(5), 103-124. DOI: 10.1016/j.jece.2019.103124
Dinari, M., Atabaki, F., Pahnavar, Z., Soltani, & R. (2020). Adsorptive removal properties of bivalent cadmium from aqueous solution using porous poly(N-2-methyl-4-nitrophenyl maleimide-maleic anhydride-methyl methacrylate) terpolymers. J. Environ. Chem. Eng., 8(6), 263-275. DOI: 10.1016/j.jece.2020.104560
Enkari, M., & Ebrahimi Aghmasjed, E. (2019). Removal of nitrate ion from aqueous solution using octa decyl amine modified montmorillonite nano clay. j. environ. water eng., 4(4), 274– 285 [In Persian]. DOI: 10.22034/jewe.2018.129150.1258
Inthorn, D., Sidtitoon, N., Silapanuntakula, S. and Incharoensakd, A. (2017). Sorption of mercury, cadmium and lead by microalgae. J. Sci. Asia, 28(6), 253-261. DOI:  10.2306/scienceasia1513-1874.2002.28.253
Jamoussi, B., Jamoussi, R., Jablaoui, C., & Rhazi, L. (2020). Efficiency of Acacia Gummifera powder as biosorbent for simultaneous decontamination of water polluted with metals. Arab. J. Chem., 13(10), 7459-7481. DOI: 10.1016/j.arabjc.2020.08.022
Jin. Z., Xie. L., & Zhang. T. (2020). Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy. Environ. Pollut., 263(4), 555-569. DOI: 10.1016/j.envpol.2020.114419
Lee, K.Y., Lee, S.H., Lee, J.E., & Lee, S.Y. (2019). Biosorption of radioactive cesium from contaminated water by microalgae Haematococcus pluvialis and Chlorella vulgaris. J. Environ. Manag., 233(4), 83–88. DOI: 10.1016/j.jenvman.2018.12.022
Li, M., Huang, W., Tang, B., Fang, Q., Ling, X., & Lv, A. (2020).  Characterizations and n-Hexane Vapor Adsorption of a Series of MOF/Alginates. Ind. Eng. Chem. Res., 59(6), 18835-18843. DOI: 10.1021/acs.iecr.9b06744
Liu, Y., Hu, L., Tan, B., Li, J., Gao, X., He, Y., Du, X., Zhang, W., & Wang, W. (2019). Adsorption behavior of heavy metal ions from aqueous solution onto composite dextran-chitosan macromolecule resin adsorbent. Int. J. Biol. Macromol., 141(5), 738-746. DOI: 10.1016/j.ijbiomac.2019.09.044
Maiti, S., Khillar, P. S., Mishra, D., Nambiraj, N. A., & Jaiswal. A. K. (2021). Physical and self–crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel. Polym. Test, 97(7), 107-125. DOI:  10.1016/j.polymertesting.2021.107155
Nguema, P. F., Luo, Z., & Lian, J. (2014). The biosorption of Cr(VI) ions by dried biomass obtained from a chromium-resistant bacterium. Front. Chem. Sci. Eng., 8(3), 454–464. DOI: 10.1007/s11705-014-1456-4
Petrovič A., & Simonič M (2016). Removal of heavy metal ions from drinking water by alginate-immobilised Chlorella sorokiniana. Int. J. Environ. Sci. Technol., 13(5), 1761–1780. DOI: 10.1007/s13762-016-1015-2
Pham, B. N., Kang, J. K., Lee, C. G., & Park, S. J. (2021). Removal of heavy metals (Cd2+, Cu2+, Ni2+, Pb2+) from aqueous solution using hizikia fusiformis as an algae-based bioadsorbent. Appl. Sci., 11(18), 8640-8659. DOI: 10.3390/app11188604
Roa, K., Oyarce, E., Boulett, A., ALSamman, M., Oyarzún, D., & Pizarro, G. D. C. (2021). Lignocellulose-based materials and their application in the removal of dyes from water: A review. Sustain. Mater. Technol., 29(2), 320-341. DOI: 10.1016/j.susmat.2021.e00320
Sayad Anari, M. H., & Shokri, H. (2017). Biosorption of heavy metals cadmium and lead from aquatic environments using spirochete algae. Environ. J., 43(3), 379-390 [In Persian].
Sinaei, M., Loghmani, M., & Bolouki, M. (2018). Application of biomarkers in brown algae (Cystoseria indica) to assess heavy metals (Cd, Cu, Zn, Pb, Hg, Ni, Cr) pollution in the northern coasts of the Gulf of Oman. Ecotoxic. Environ. Safe., 164(1), 675-680. DOI: 10.1016/j.ecoenv.2018.08.074
Taşdelen, B., Çifçi, D. İ., & Meriç, S. (2021). Preparation and characterization of chitosan/hyaluronic acid/itaconic acid hydrogel composite to remove heavy metals in aqueous solution. Desal. Water Treat., 209(9), 204-211.  DOI: 10.5004/dwt.2021.26640
Wu, Q., He, H., Zhou, H., Xue, F., Zhu, H., & Zhou, S. (2020). Multiple active sites cellulose-based adsorbent for the removal of low-level Cu(II), Pb(II) and Cr(VI) via multiple cooperative mechanisms. Carbohydr. Polym., 233(6), 115-125. DOI: 10.1016/j.carbpol.2020.115860
Xuejiang, W., Ling, C., Siqing, X., Jianfu, Z., & Chovelon, J. M., & Renault, N. J. (2016). Biosorption of Cu(II) and Pb(II) from aqueous solutions by dried activated sludge. Miner Eng., 19(9), 968-71. DOI: 10.1016/j.mineng.2005.09.042
Zelli Booriabadi, M., Hoseini, S. A., Hedayati, S. A., Adeli, A., & Rezaei, H. (2020). Study on isotherm and kinetic for the adsorption of heavy metal Zinc from aqueous solution by Scenedesmus micro-algae. J. Environ. Sci. Technol., 22(9), 59-71 [In Persian]. DOI: 10.22034/jest.2021.27538.3660
Zhuang, Y. H., & Zhang, T. C. (2015). Effects of dissolved oxygen on formation of corrosion products and contaminant oxygen and nitrate reduction in zero valent iron systems withor without aqueous Fe2+. J. Water Res., 39(3), 1751-1760. DOI: 10.1016/j.watres.2005.03.002