نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس‌ارشد، گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی قم، قم، ایران

2 استادیار، گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی قم، قم، ایران

چکیده

اختلاف دما دو طرف یک غشا که در یک‌طرف آب ناخالص و در طرف دیگر آب خالص وجود دارد، می‌تواند به تصفیه آب منجر شود. عدم تقارن انرژی جنبشی مولکولی در دو سمت غشاء باعث رانش آب خالص از سمت گرم به سرد می‌شود. در پژوهش حاضر یک سیستم تصفیه غشائی مبتنی بر اختلاف دما میان منابع آب که دارای نانولوله‌های کربنی بود با روش شبیه‌سازی دینامیک مولکولی موردبررسی قرارگرفت. تأثیر عوامل مختلف بر میزان عبور آب و دفع نمک بررسی‌شد. نتایج شبیه‌سازی‌ها امکان‌پذیری استفاده از نیروی رانش گرمایی جهت تصفیه آب با غشاء­های دارای نانولوله­های کربنی را تائید ­کرد. نتایج نشان داد که با افزایش دمای منبع گرم مقدار عبور آب و سرعت تصفیه افزایش می­یابد. ‌طوری‌که افزایش اختلاف دمای میان منابع از 15 به K 60 باعث افزایش 30% تصفیه آب شد. درعین‌حال احتمال عبور ناخالصی‌ها از نانولوله نیز زیاد شد. همچنین افزایش غلظتِ ناخالصی باعث کاهش سرعت فرایند تصفیه می‌شود. افزایش قطر نانولوله تا nm 015/0 موجب افزایش سرعت تصفیه آب ‌شد. در نانولوله‌هایی با قطر کمتر از nm 015/0، 100% ناخالصی‌ها دفع می‌شوند. از میان نانولوله‌های بررسی‌شده، بهترین عملکرد برای نانولوله کربنی از نوع آرمچیر به دست‌ آمد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Molecular Dynamics Simulation of Water Treatment Using Thermal Driving Force and Carbon Nanotube Membrane

نویسندگان [English]

  • Arash Rajabi-Vahid 1
  • Mahdi Sahebi 2

1 M.Sc., Department of Mechanical Engineering, Faculty of Mechanical Engineering, Qom University of Technology, Qom, Iran

2 Assist. Professor, Department of Mechanical Engineering, Faculty of Mechanical Engineering, Qom University of Technology, Qom, Iran

چکیده [English]

The temperature difference between the pure and impure water on the two sides of a membrane can lead to water purification. The asymmetry of molecular kinetic energy on both sides of the membrane causes pure water to move from the hot side to the cold one. In this research, a carbon nanotube membrane filtration system based on the temperature difference between water sources has been investigated by the molecular dynamics simulation method. The effect of various factors has been investigated. The simulation results confirm the possibility of using a thermal driving force for water purification with carbon nanotubes. The results show that by increasing the hot source temperature, the water passage and the purification speed increase. Such that increasing the temperature difference between sources from 15 to 60 K increases the water purification rate by 30%. Simultaneously, the possibility of impurities passing through the nanotube also increases. Increasing the impurity concentration slows down the purification process. Increasing the diameter of the nanotube up to 15 Å increases the water purification rate. In nanotubes with a diameter of less than 15 Å, 100% of impurities are removed. Among the examined nanotubes, the best performance was obtained for the armchair carbon nanotube.

کلیدواژه‌ها [English]

  • Carbon nanotube
  • Molecular dynamic simulation
  • Temperature difference
  • Water purification
Aende, A., Gardy, J., & Hassanpour, A. (2020). Seawater desalination: A review of forward osmosis technique, its challenges, and future prospects. Process., 8(8), 901. DOI: 10.3390/pr8080901
Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R. V., Missimer, T., & Lattemann, S. (2017). Membrane-based seawater desalination: Present and future prospects. Desal., 401, 16-21. DOI: 10.1016/j.desal.2016.10.002
Bantan, R. A., Abu-Hamdeh, N. H., Nusier, O. K., & Karimipour, A. (2021). The molecular dynamics study of aluminum nanoparticles effect on the atomic behavior of argon atoms inside zigzag nanochannel. J. Mole. Liquid., 331, 115714. DOI: 10.1016/j.molliq.2021.115714
Bartolomeu, R. A., & Franco, L. F. (2020). Thermophysical properties of supercritical H2 from molecular dynamics simulations. Int. J. Hydrogen Energy45(33), 16372-16380. DOI: 10.1016/j.ijhydene.2020.04.164
Barrejón, M., & Prato, M. (2022). Carbon nanotube membranes in water treatment applications. Advanced Mater. Inter., 9(1), 2101260. DOI: 10.1002/admi.202101260
Chen, B., Jiang, H., Liu, H., Liu, K., Liu, X., & Hu, X. (2019). Thermal-driven flow inside graphene channels for water desalination. 2D Mater., 6(3), 035018. DOI: 10.1088/2053-1583/ab15ac
Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B, 112(5), 1427-1434. DOI: 10.1021/jp709845u
Das, R., Ali, M.E., Abd Hamid, S.B., Ramakrishna, S. and Chowdhury, Z.Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desal., 336, 97-109. DOI: 10.1016/j.desal.2013.12.026
De Volder, M.F., Tawfick, S.H., Baughman, R.H. and Hart, A.J. (2013). Carbon nanotubes: present and future commercial applications. science, 339(6119), 535-539. DOI: 10.1126/science.1222453
Elimelech, M. and Phillip, W.A. (2011). The future of seawater desalination: energy, technology, and the environment. science, 333(6043), 712-717. DOI: 10.1126/science.1200488
Elishakoff, I., Dujat, K., Muscolino, G., Bucas, S., Natsuki, T., Wang, C.M., Pentaras, D., Versaci, C., Storch, J., Challamel, N. and Zhang, Y. (2013). Carbon nanotubes and nanosensors: vibration, buckling and balistic impact. John Wiley & Sons. 450 pp.
Fox, R.W., McDonald, A.T. and Mitchell, J.W. (2020). Introduction to fluid mechanics. John Wiley & Sons. 612 pp.
Hou, Y., Wang, M., Chen, X. and Hou, X. (2021). Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination, Nano Res. 14, 2171-2178. DOI: 10.1007/s12274-020-3173-2
Huray, P.G. (2011). Maxwell's equations. John Wiley & Sons. 310 pp.
Karniadakis, G., Beskok, A. and Aluru, N. (2006). Microflows and nanoflows: fundamentals and simulation. Springer Science & Business Media. 824 pp.
Kim, S.J., Ko, S.H., Kang, K.H. and Han, J. (2010). Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol., 5(4), 297-301. DOI: 10.1038/nnano.2010.34
Leng, J., Ying, T., Guo, Z., Zhang, Y., Chang, T., Guo, W. and Gao, H. (2022). Thermally induced continuous water flow in long nanotube channels. Carbon, 191, 175-182. DOI: 10.1016/j.carbon.2022.01.049
Lim, Y.J., Goh, K., Kurihara, M. and Wang, R. (2021). Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication–A review. Journal of Membrane Science. 629, 119292. DOI: 10.1016/j.memsci.2021.119292
Liu, X., Wang, M., Zhang, S. and Pan, B. (2013). Application potential of carbon nanotubes in water treatment: a review. Journal of Environmental Sciences. 25(7), 1263-1280. DOI: 10.1016/S1001-0742(12)60161-2
Luo, Y. and Roux, B. (2010). Simulation of osmotic pressure in concentrated aqueous salt solutions. J. Phys. Chem. Lett., 1(1), 183-189. DOI: 10.1021/jz900079w
Lyon, D. and Hubler, A. (2013). Gap size dependence of the dielectric strength in nano vacuum gaps. IEEE Trans. Dielectr. Electr. Insul., 20(4), 1467-1471. DOI: 10.1109/TDEI.2013.6571470
Mann, D.J. and Halls, M.D. (2003). Water alignment and proton conduction inside carbon nanotubes. Phys. Rev. Lett., 90(19), 195503. DOI: 10.1103/PhysRevLett.90.195503
Mayo, S.L., Olafson, B.D. and Goddard, W.A. (1990). DREIDING: a generic force field for molecular simulations. J. Phys. Chem., 94(26), 8897-8909. DOI: 10.1021/j100389a010
Mehta, N.A. and Levin, D.A. (2019). Electrospray molecular dynamics simulations using an octree-based Coulomb interaction method. Phys. Rev. E ., 99(3), 033302. DOI: 10.1103/PhysRevE.99.033302
Oyarzua, E., Walther, J.H. and Zambrano, H.A. (2023). Water flow in graphene nanochannels driven by imposed thermal gradients: the role of flexural phonons. Phys. Chem. Chem. Phys., 25(6), 5073-5081. DOI: 10.1039/D2CP04093J
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117(1), 1-19. DOI: 10.1006/jcph.1995.1039
Sahebi, M. and Azimian, A.R. (2022). Nanoscale fluid pumping using a symmetric temperature gradient: a molecular dynamics study. Nanoscale Microscale Thermophys. Eng., 26(2-3), 84-94. DOI: 10.1080/15567265.2022.2070561
Sam, A., Prasad, V. and Sathian, S.P. (2019). Water flow in carbon nanotubes: the role of tube chirality. Phys. Chem. Chem. Phys., 21(12), 6566-6573. DOI: 10.1039/C9CP00429G
Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008). Science and technology for water purification in the coming decades. Nanoscience and technology: Nature, 452(7185), 301-310. DOI: 10.1038/nature06599
Subramani, A. and Jacangelo, J.G. (2015). Emerging desalination technologies for water treatment: a critical review. Water Res., 75, 164-187. DOI: 10.1016/j.watres.2015.02.032
Tersoff, J. (1988). New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991. DOI: 10.1103/PhysRevB.37.6991
Thomas, M. and Corry, B. (2015). Thermostat choice significantly influences water flow rates in molecular dynamics studies of carbon nanotubes. Microfluid. Nanofluidics, 18(1), 41-47. DOI: 10.1007/s10404-014-1406-y
Wang, X., Ramirez-Hinestrosa, S., Dobnikar, J. and Frenkel, D. (2020). The Lennard-Jones potential: when (not) to use it. Phys. Chem. Chem. Phys., 22(19), 10624-10633. DOI: 10.1039/C9CP05445F
Yang, H.Y., Han, Z.J., Yu, S.F., Pey, K.L., Ostrikov, K. and Karnik, R. (2013). Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun., 4(1), 1-8. DOI: 10.1038/ncomms3220
Zhao, K. and Wu, H. (2015). Fast water thermo-pumping flow across nanotube membranes for desalination, Nano Lett., 15(6), 3664-3668. DOI: 10.1021/nl504236g