Document Type : Case Report

Authors

1 Assist. Professor., Soil Conservation and Watershed Management Research Institute (SCWMRI), Agricultural Research, Education and Extension Organization, Tehran, Iran

2 Assist. Professor, Soil Conservation and Watershed Management Research Institute (SCWMRI), Agricultural Research, Education and Extension Organization, Tehran, Iran

3 Assoc. Professor., Soil Conservation and Watershed Management Research Institute (SCWMRI), Agricultural Research, Education and Extension Organization, Tehran, Iran

4 Professor, Soil Conservation and Watershed Management Research Institute (SCWMRI), Agricultural Research, Education and Extension Organization, Tehran, Iran

Abstract

The aim of this study was to evaluate the effectiveness of estimated soil moisture data obtained from the GLDAS, ESA and SMAP sensor databases with the observed data of the Silakhor Agricultural Meteorological Station to investigate the spatial and temporal variation of soil moisture in Lorestan province. The data used in this research include the soil moisture data of the Silakhor station, GLDAS database, ESA center and SMAP sensor products during a six-year period (2016-2021). Estimated soil moisture data were evaluated against observed data using R2, RMSE and MAD statistics. The results showed that the SMAP satellite is associated with underestimation and the GLDAS model and the ESA satellite are associated with overestimation of soil moisture. However, in general, the estimated soil moisture values of the three mentioned sources have good accuracy. The value of the correlation coefficient between observed soil moisture data with soil moisture data obtained from SMAP and ESA satellites and GLDAS model was obtained as 0.62, 0.59 and 0.72 respectively, and in the combined case (SMAP, ESA and GLDAS) the value of correlation coefficient was increased to 0.77, therefore, it is suggested to use combine data to use soil moisture estimation.

Keywords

Main Subjects

Ahmadi, M., Nosrati, K., & Salki, H. (2013). Drought and its relationship with soil moisture. Geora., 38, 77-91 [in Persian].
Albergel, C., De Rosnay, P., Gruhier, C., Munoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y. F., & Wagner, W. (2011). Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Tech. Memoran.,.652, 1-25, DOI: 10.1016/j.rse.2011.11.017.
Amini, A., Abdeh Kolahchi, A., Nadhir Al-Ansari, N., Karami Moghadam, M., & Mohammad, T. (2019). Application of TRMM precipitation data to evaluate drought and its effects on water resources instability. Appl. Sci., 9(24), DOI:  10.3390/app9245377.
Azizi, G., Safarrad, T., Mohammadi, H., & Faraji Sabokbar, H, A. (2016). Evaluation and Comparison of Reanalysis Precipitation Data in Iran. Phys. Geogra. Res. Quart., 48(1), 33-49. DOI: 10.22059/JPHGR.2016.57026, [in Persian].
Babaeian, E., Homaee, M., & Noroozi, A.A. (2014). Retrieving surface soil water content using ENVISAT ASAR RADAR data in a semi-arid region of Iran. Water Res. Agri., 27(4), 611-622. DOI: 10.22092/jwra.2014.128867 [in Persian].
Babazadeh, H., Norouzi Aghdam, Elnaz., Aghighi, H., Shamsnia, S. A., & Khodadadi dehkordi, D. (2012). Estimation of soil surface moisture in arid and semi-arid rangelands using remotely sensed temperature/vegetation index measurements, Case study: Khorasan Province. Iran. J. Range Desert Res., 19(1), 120-132, DOI: 10.22092/ijrdr.2012.103074 [in Persian].
Bahmani, O., & Ramazani, B. (2014). Evaluation of the performance of pedotransfer functions for estimating soil moisture retention curve with SWRC model. J. Water Res. Agri., 28(4), 773-785. DOI: 10.22092/jwra.2015.100831 [in Persian]. 
Benjamin, F.Z., Matthew, R., & Francisco, O. (2010). Evaluation of the global land data assimilation system using global river discharge data and a source‐to‐sink routing scheme. Water Resour. Res., 46, W06507. DOI: 10.1029/2009WR007811.
Brocca, L., Moramarco, T., Melone, F., Wagner, W., Hasenauer, S., & Hahn, S. (2012). Assimilation of surface- and root-zone ASCAT soil moisture products into rainfall–runoff modeling. IEEE Trans. Geosci. Remote Sen., 50(7); 2542–2555. DOI: 10.1109/TGRS.2011.2177468.
Cashion, J., Lakshmi, V., Bosch, D., & Jackson, T. (2005). Microwave remote sensing of soil moisture: Evaluation of the TRMM microwave imager (TMI) satellite for the Little River Watershed Tifton, Georgia. J. Hydrol., 307(1), 242-253. DOI: 10.1016/j.jhydrol.2004.10.019.
Chen, F., Crow, W. T., Bindlish, R., Colliander, A., Burgin, M. S., Asanuma, J., & Aida, K. (2018). Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sens. Environ., 214, 1–13. DOI: 10.1016/j.rse.2018.05.008.
Chen, Y., Yang, K., Qin, J., Zhao, L., Tang, W., & Han, M. (2013). Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos., 118, 1–10. DOI: 10.1002/jgrd.50301.
Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., & Kim, S. B. (2017). Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ., 191, 215–231. DOI: 10.1016/j.rse.2017.01.021.
Das, K., & Paul, P. K. (2015). Soil moisture retrieval model by using RISAT-1, C-band data in tropical dry and sub-humid zone of Bankura district of India. Egypt. J. Remote Sens. Space Sci., 18, 297–310. DOI:  10.1016/j.ejrs.2015.09.004.
Dehghanpir, S., Bazrafshan, O., & Asgarinejad, A. (2014). Drought and its relationship with soil moisture (case study: Bandar Abbas meteorological station), The first regional conference on sea, development and water resources of the coastal areas of the Persian Gulf, Bandar Abbas. [in Persian].
Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., & Brocca, L., (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185-215. DOI:  10.1016/j.rse.2017.07.001.
Erfanian, M., Kazempour, S., & Heidari, H. (2014). Calibration of TRMM satellite 3B42 and 3B43 rainfall data in climatic zones of Iran. Phys. Geogra. Res. Quart., 48(2), 287-303 DOI: 10.22059/JPHGR.2016.59370 [in Persian].
Gruber, A., Scanlon, T., Schalie, R. V., Wagner, W., & Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data, 11, 717–739. DOI: 10.5194/essd-11-717-2019.
Koster, R. D., Mahanama, S. P. P., Livneh, B., Lettenmaier, D. P., & Reichle, R. H. (2010). Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci., 3, 613–616. DOI: 10.1038/NGEO944.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., Van Dijk, A. I. J. M., & Evans, J. P. (2011). Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci., 15(2), 425-436. DOI: 10.5194/hess-15-425-2011.
Miri, M. (2016). Analysis of Relationship between Climate Change and Zagros forests decline (A case study: Ilam Region), PhD Thesis, Faculty of Geography, University of Tehran. [in Persian].
Miri, M., Azizi, G., Mohammadi, H., & Pourhashemi, M. (2018). Introduction and evaluation of global model of land data assimilation. Sci. Res. Quart. Geogra. Data (SEPEHR), 26(104), 5-17. DOI: 10.22131/sepehr.2018.30514 [in Persian].
Miri, M., Raziei, T., & Rahimi, M. (2016). Evaluation and statistically comparison of TRMM and GPCC datasets with observed precipitation in Iran. J. Earth Space Phys., 42(3), 657-672. DOI: 10.22059/JESPHYS.2016.56102  [in Persian].
Rahmanikam, A. (2015). Extraction and trending of soil moisture using remote sensing satellite data, Master thesis, Shahrood University of Technology. [in Persian].
Scanlon, T., Pasik, A., Dorigo, W., de Jeu, R. A. M., Hahn, S., van der Schalie, R., Wagner, W., Kidd, R., Gruber, A., Moesinger, L., Preimesberger, W., van der Vliet, M., & Stradiotti, P. (2022). Algorithm theoretical baseline document (ATBD) supporting product Version 07.1, Earth Observation Data Centre for Water Resources Monitoring (EODC) GmbH. Available at: https://www.cen.uni-hamburg.de/en/icdc/data/land/docs-land/esa-cci-sm-rd-d2-1-v3-atbd-v07-1-issue-1-0.pdf
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125–161 DOI: 10.1016/j.earscirev.2010.02.004
Spennemann, P. C., Rivera, J. A., Saulo, A. C., & PEnalba, O. C. (2015). A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over south America. J. Hydrometeorol., 16, 159-171. DOI: 10.1175/JHM-D-13-0190.1.
Taylor, C. M., De Jeu, R. A. M., Guichard, F., Harris, P. P., & Dorigo, W. A. (2012). Afternoon rain more likely over drier soils. Nat., 489, 282–286. DOI: 10.1038/nature11377.
Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China, 3(2), 237-247. DOI: 10.1007/s11707-009-0023-7.
Wu, R., & Kinter, J. (2009). Analysis of the relationship of U.S. droughts with SST and soil moisture: distinguishing the time scale of droughts. J. Climat., 22, 4520- 4538. DOI: 10.1175/2009JCLI2841.1.
Yuan, S., & Quiring, S. M. (2017). Evaluation of soil moisture in CMIP5 simulations over the contiguous United States using in situ and satellite observations. Hydrol. Earth Syst. Sci., 21, 2203–2218. DOI: 10.5194/hess-21-2203-2017.
Zarenejad, F. (2012). Estimation of surface soil moisture using improved triangle method and soil index, Master thesis, Faculty of Technology and Engineering, Isfahan University, pp 155.  [in Persian].