Document Type : Research Paper

Author

Assist. Professor, Department of Environment, Faculty of Natural Resources, Semnan University, Semnan, Iran

Abstract

Phosphorus (P) is considered the leading cause of eutrophication in natural waters and has received considerable attention recently from the scientific community. In this study, P removal from aqueous solutions was investigated using bentonite, kaolinite, calcite, and zeolite mineral adsorbents modified with extract of walnut shell and wheat straw, chitosan, sodium carboxymethyl cellulose (CMC), and malic acid. Phosphorus sorption was evaluated using adsorption isotherms equations. Modified adsorbents with chitosan obtained the maximum sorption capacity of P. The results showed that P sorption capacity by Chitosan-adsorbents (bentonite (0.35 mg/g), calcite (2.09 mg/g), kaolinite (0.41 mg/g) and zeolite (0.43 mg/g)) was improved by ~ 129, 102, 128 and 119%, respectively compared to unmodified adsorbents (bentonite (0.27mg/g), calcite (2.04 mg/g), kaolinite (0.32 mg/g) and zeolite (0.36 mg/g). Langmuir and Freundlich models were used to simulate the sorption of P on modified adsorbents. The double layer model (DLM) could predict P adsorption by modified adsorbents over a wide pH range and varying ionic strength. Thermodynamic parameters showed that the nature of P adsorption by these adsorbents was non-spontaneity nature.

Keywords

Main Subjects

Ahmaruzzaman, M. (2008). Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Colloid Interf. Sci., 143, 48–67. DOI: 10.1016/j.cis.2008.07.002
Antelo, J., Avena, M., Fiol, S., López, R. and Arce, F. (2005). Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. J. Colloid Interf. Sci. 285, 476–486.DOI:10.1016/j.jcis.2004.12.032
Bhatnagar, A., Kumar, E., & Sillanp, M. (2010). Nitrate removal from water by nano-alumina: Characterization and sorptionstudies. Chem. Eng. J., 163, 317–323.
Chen, J., Yan, L-g., Yu, H-q., Li, S., Qin, L-l., Liu, G-q., Li, Y-f., & Du, B. (2016). Efficient removal of phosphate by facile prepared magnetic diatomite and illite clay from aqueous solution. Chem. Eng. J., 287, 162–172. DOI:10.1016/j.cej.2015.11.028
Chen, L. Y., Wu, P. X., Chen, M., Lai, X., Ahmed, Z., Zhu, N.W., Dang, Z., Bi, Y., & Liu, T. (2018). Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead. Appl. Clay Sci., 159, 74–82. DOI:10.1016/j.clay. 12.050
Cooney, D. O. (1999). Adsorption designs for wastewater treatment. Lewis, Boca Raton.
Cucarella, V., & Renman, G. (2009). Phosphorus sorption capacity of filter materials used for on- sote wastewater treatment determined in batch experiments – a comparative study. J. Environ. Qual., 38, 381–392.
Debnath, M., Rahman, M., Minami, H., Rahman, M., Alam, M., Sharafat, M., Hossain, M., & Ahmad, H. (2019). Single step modification of micrometer-sized polystyrene particles by electromagnetic polyaniline and sorption of chromium(VI) metal ions from water. J. Appl. Polym. Sci., 136(19). 47529. DOI:10.1002/APP.47524
Devau, N., Hinsinger, P., Le Cadre, E., Colomb, B., & Ge´ Rard, F. (2011). Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils. Geochim. Cosmochim. Acta., 75, 2980–2996.DOI:10.1016/j.gca.2011.02.034
Du, Y., Zhang, Q., Liu, Z., He, H., Lurling, M., Chen, M., & Zhang, Y. (2019). Composition of dissolved organic matter controls interactions with La and Al ions: Implications for phosphorus immobilization in eutrophic lakes. Environ. Poll., 248, 36-47. DOI:10.1016/j.envpol.2019.02.002
Ersoy, B. and Elik, M.S.C. (2002). Electrokinetic properties of clinoptilolite with mono- and multivalent electrolytes. Micropor. Mesopor.s Mater., 55, 305–312.
Gan, F., Zhou, J., Wang, H., Du, C., and Chen, X. (2009). Removal of phosphate from aqueous solution by thermally treated natural palygorskite. Water Res., 43(11), 2907-2915. DOI:10.1016/j.watres.2009.03.051.
Geng, B., Jin, Z., Li, T., & Qi, X. (2009). Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere., 75, 825–830.DOI:10.1016/j.chemosphere.2009.01.009
Goldberg, S. (1992). Use of surface complexation models in soil chemical systems. Adv. Agron., 47, 233–329.DOI:10.1016/S0065-2113(08)60492-7
Gu, Y., Xie, D., Ma, Y., Qin, W., Zhang, H., Wang, G., Zhang, Y., & Zhao, H. (2017). Size modulation of zirconium-based metal organic frameworks for highly efficient phosphate remediation. ACS Appl. Mater. Interfaces., 9(37), 32151e32160. DOI:10.1021/acsami.7b10024
Jang, J., & Lee, D. S. (2019). Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and fixed-bed column studies. J. Hazard. Mater., 375, 9-18. DOI: 10.1016/j.jhazmat.2019.04.070
Kim, J. W., Sohn, M. H., Kim, D. S., Sohn, S. M., & Kwon, Y. S. (2001). Production of granular activated carbon from waste walnut shell and its adsorption characteristics of Cu2+ ion. J. Hazard. Mater., 85, 301–315. DOI: 10.1016/S0304-3894(01)00239-4
Kong, L., Tian, Y., Pang, Z., Huang, X., Li, M., Yang, R., Li, N., Zhang, J. and Zuo, W. (2019). Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites. Chem. Eng. J., 371, 893-902. DOI: 10.1016/j.cej.2019.04.116
Kumar, I. A., Jeyaprabha, C., Meenakshi, S., & Viswanathan, N. (2019). Hydrothermal encapsulation of lanthanum oxide derived Aegle marmelos admixed chitosan bead system for nitrate and phosphate retention. Int. J. Biol. Macromol., 130, 527-535. DOI: 10.1016/j.ijbiomac.2019.02.106
Li, X., Xie, Q., Kuang, Y., & Wu, D. (2021). Coupled influence of pH and dissolved organic carbon on the immobilization of phosphorus by lanthanum-modified zeolite. Chemosphere., 274, 129958. DOI: 10.1016/j.chemosphere.2021.129958
Luna, A. S., Costa, A. L. H., da Costa, A. C. A., & Henriques, C. A. (2010). Competitive biosorption of cadmium (II) and zinc (II) ions from binary systems by Sargassum filipendula. Bioresour. Technol., 101, 5104–5111. DOI: 10.1016/j.biortech.2010.01.138
Mahaninia, M. H., & Wilson, L. D. (2017). Phosphate uptake studies of cross-linked chitosan bead materials. J. Colloid Interf. Sci., 485, 201-212. DOI: 10.1016/j.jcis.2016.09.031
Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere., 197, 768-781. DOI: 10.1016/j.chemosphere.2018.01.098
Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-Garcy, M. A., & Moreno-Castill, C. (2001). Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol., 76, 1209–1215. DOI: 10.1002/jctb.506
Rowell, D. L. (1994). Soil Science: Methods and Applications. Lingman Group, Harlow. 350 pp.
SØ, H. U., Postma, D., Jakobsen, R., & Larsen, F. (2012). Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC. Geochim. Cosmochim. Acta., 93, 1–13. DOI: 10.1016/j.gca.2012.06.021
Wang, B., Hu, X., Zhou, D., Zhang, H., Chen, R., Guo, W., Wang, H., Zhang, W., Hong, Z., & Lyu, D. (2021). Highly selective and sustainable clean-up of phosphate from aqueous phase by eco-friendly lanthanum cross-linked polyvinyl alcohol/alginate/palygorskite composite hydrogel beads. J. Clean. Prod., 298, 126878. DOI: 10.1016/j.jclepro.2021.126878
Wang, L., & Wang, A. (2007). Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J. Hazard. Mater., 147, 979-985. DOI: 10.1016/j.jhazmat.2007.01.145
Xu, X., Chen, Y., Wu, X., Fan, P. and Song, R. (2020). La(III)-bentonite/chitosan composite: A new type adsorbent for rapid removal of phosphate from water bodies. Appl. Clay Sci., 190, 105547. DOI: 10.1016/j.clay.2020.105547
Zhao, Y., Zhang, Q., Yuan, W., Hu, H., Li, Z., Ai, Z., & Li, Y. (2019). High efficient coagulant simply by mechanochemically activating kaolinite with sulfuric acid to enhance removal efficiency of various pollutants for wastewater treatment. Appl. Clay Sci., 180, 105187. DOI: 10.1016/j.clay.2019.105187