Document Type : Research Paper

Authors

1 M.Sc. Alumni, Department of Water Engineering, College of Agriculture and Environment, Arak University, Arak, Iran

2 Assist. Professor, Department of Water Engineering, College of Agriculture and Environment, Arak University, Arak, Iran

3 M.Sc. Alumni, Department of Irrigation & Reclamation Engineering, Tehran University, Karaj, Iran

Abstract

This study aimed to present a dynamic simulation of hydrological drought using Vensim and the constant threshold level method in the Dorud-Borujerd basin in the 1991-2019 period. First, the threshold levels were estimated, and then the drought duration and volume were quantified. Next, the frequency of the highest duration and volume values was analyzed to determine the return periods. While confirming the superiority of the systems thinking approach, the results showed that the highest drought duration figures were 229 and 123 days, respectively, at the 70 and 90% threshold levels of the flow duration curve in the Bitun station. Tire station recorded 21.320 and 38.47 MCM for 70% and 90% threshold levels, respectively, which were the largest figures for drought volume. The frequency analysis of these figures obtained from dynamic simulation showed that the drought duration and volume will have a return period of 25 and 8 years and 4 and 14 years, respectively, at 70% and 90% threshold levels. Moreover, 2012 and 2015 were very dry years in terms of both duration and volume. Therefore, drought episodes have been occurring in the Dorud-Borujerd basin for many years and will continue with more intensity in the future.

Keywords

Main Subjects

Abhishek, A., Channaveerappa, B., & Dodamani, M. (2016). Comparison of two hydrological drought indices. Perspect. Sci., 8, 626-628. DOI: 10.1016/j.pisc.2016.06.039.
Ahmadi, M., Paimozd, S., & Rahimi, M. (2021). Comparison of hydrological and meteorological drought monitoring using RDI and EDI indices. Environ. Water Eng., 7(4), 683–696. DOI: 10.22034/jewe.2021.276629.1531 [In Persian].
Beiranvand, I., Gabdomkar, A., Abbasi, A., & Khodagholi, M. (2022). Statistical-Synoptic Analysis of April 2019 Heavy Rainfall in Doroud-Boroujerd Basin.  J. Nat. Environ. Hazard., 11(32), 169-188. DOI:  10.22111/jneh.2022.38564.1806 [In Persian].
Byazedi, M., & Saghafian, B. (2011). Regional analysis of river flow drought in the southwestern regions of the country. Iran-Watershed Manag. Sci. Eng., 14(5), 37-52 [In Persian].
Bonacci, O. )1993(. Hydrological Identification of drought. Hydrol. Process., 7, 249-262. DOI: 10.1002/hyp.3360070303.
Clancy, T. (2018). Systems thinking: Three system archetypes every manager should know. IEEE Eng. Manag. Rev., 4(6), 32-41. DOI: 10.1109/EMR.2018.2844377.
Edmund, T. (2011). Defining the threshold level of hydrological drought in lake catchments. Limnol. Rev., 11(2), 81-88. DOI: 10.2478/v10194-011-0029-x.
Fleig, A. K., Tallaksen, L. M., Hisdal, H., & Demuth, S. (2006). A global evaluation of streamflow drought characteristics. Hydrol. Earth Syst. Sci. Discuss., 10(4), 535-552. DOI: 10.5194/hess-10-535-2006.
Gheisouri, M., Soltani-Gerdefaramarzi, S., & Ghasemi, M. )2019(. Assessment of Meteorological and Hydrological Drought and its Effect on Water Quality: (Case Study: Godarkhosh River). Irrig. Sci. Eng., 41(4), 91-105. DOI:  10.22055/jise.2017.20927.1499 [In Persian].
Ghorbani, M., Mozayyan, M., & Zarei, H. (2019). Hydrological drought investigation of Armand River using low flows analysis. J. Water Soil Conserv., 26(3), 247-263. DOI:   10.22069/jwsc.2019.15189.3037 [In Persian].
Hisdal, H., Clausen, B., Gustard, A., Peters, E., & Tallaksen, L. M. (2004). Hydrological Drought Characteristics. Elsevier Science, The Netherlands, Developments in Water Science, chap. 5, 139-198.
Hisdal, H., & Tallaksen, L. M. (2003). Estimation of regional meteorological and hydrological drought characteristics: A case study for Denmark. J. Hydrol., 281(3), 230-247. DOI: 10.1016/S0022-1694(03)00233-6.
Jamal, M., Ebrahimi, H., & Mousavi Jahrom, H. (2020). Hydrological drought index correction based on determining the most appropriate probability distribution. J. Water Soil Resour. Conserv., 9(5), 135-152. DOI:  20.1001.1.22517480.1399.9.4.9.3 [In Persian].
Karimi, M., Shahedi, K., & Khosravi, K. (2016). Investigation of meteorological and hydrological drought using drought indicators in the Gharesu watershed. Earth Space Phys., 1(42), 159-170 [In Persian].
Lashani Zand, M., Parvaneh B., & Beiranvand, F. (2011). Climatic zoning of Lorestan Province using statistical methods and determining the most suitable experimental method. Nat. Geogra. Quart., 4(9), 89-106 [In Persian].
Mortezaii, G. H., lotfi, J., khalighi Sigarodi, S., Saravi, M., & Nazari Samini, A. (2020). Analysis and evaluation of hydrological drought indicators in Kurdistan Province. J. Watershed Eng. Manag., 12(2), 441-453. DOI: 10.22092/ijwmse.2019.123305.1566 [In Persian].
Mozafari, M., Hosseini, Z., & Fijani, E. (2022). Assessing the role of meteorological and hydrological droughts on the drying up of the Bakhtegan and Tashk lakes. J. Nat. Environ. Hazard., 11(34). DOI: 10.22111/jneh.2022.39448.1835.
Paimozd, S. (2021). Simulating surface water allocation and identifying systemic archetype using vensim software: A case study of Qorveh Dehgolan's basin. Desert Ecosyst. Eng. J., 10(31) ,123-141. DOI:  10.22052/DEEJ.2021.10.31.61 [In Persian].
Salajegheh, A., Mesbah zade, T., Soleimani sardoo, F., & Alipour, N. (2017). Assessment of hydrological drought using constant threshold level method (Case Study: karaj Dam Basin). Iran-Watershed Manag. Sci. Eng., 11(39), 89-99. DOI: 20.1001.1.20089554.1396.11.39.10.8 [In Persian].
Staudinger, M., Weiler, M., & Seibert, J. (2015). Quantifying sensitivity to droughts –an experimental modeling approach. Hydrol. Earth Syst. Sci., 19(3), 1371–1384. DOI: 10.5194/hess-19-1371-2015.
Teimoori, M., Mirdamadi, S. M., & Hosseini, S. J. F. (2019). Modeling of climate change effects on groundwater resources: the application of dynamic systems approach. Int. J. Agri. Manag. Develop., 9(2), 107-118. DOI: 20.1001.1.21595852.2019.9.2.3.3.
Yarahmadi, J., & Rrostami zad, G. H. (2019). Analysis of hydrological droughts in the north of Urmia Lake. Hydrogeomorph., 6(19), 79-100. DOI: 20.1001.1.23833254.1398.6.19.5.6 [In Persian].
Zandifar, S., Dragahian, F., Fijani, E., & Naeimi, M. (2021). The trend of groundwater variations and drought in the Karkheh Watershed. Watershed Manag. Res., 34(3), 53-73. DOI: 10.22092/wmej.2021.343333.1352.
Zhang, L., Jiao, W., Zhang, H., Huang, C., & Tong, Q. (2021). Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ., 190(1), 96-106. DOI: 10.1016/j.rse.2016.12.010.