Document Type : Case Report

Authors

1 Assist. Professor, Soil Conservation and Watershed Management Department, Zanjan Agricultural and Natural Resources Research Center, AREEO, Zanjan, Iran

2 Assist. Professor, Soil Conservation and Watershed Management Department, Fars Agricultural and Natural Resources Research Center, AREEO, Fars, Iran

3 Assoc. Professor, Soil Conservation and Watershed Management Research Institute, Agricultural and Natural Resources Research Center, AREEO, Tehran, Iran

Abstract

Evapotranspiration is one of the most important elements of the hydrological cycle. Estimation of evapotranspiration is imperative for effective forest, irrigation, rangeland and water resources management as well as to increase yields and for better crop management. The aim of this study is to calibrate the SEBAL algorithm in estimating evapotranspiration in the Sohrin-Qaracheryan plain, which is affected by flood spreading. In this study, Landsat 8 satellite images were used in 2020-2021 to obtain the coefficients of the relevant bands. Then, the net radiation flux on the earth’s surface and the earth’s heat flux is obtained using incoming-outgoing radiation fluxes from albedo, surface emissivity, land surface temperature, and plant indicators. Next, the sensible heat flux is calculated by determining the hot and cold pixels. Finally, evapotranspiration maps are plotted. Based on the results of this research evapotranspiration obtained from soil water balance model and SEBAL algorithm were estimated as 24115 and 19642 m3, respectively. Also, the calibration of the results obtained from the SEBAL algorithm with reference evapotranspiration was done using R2 and RMSE statistical indices, and were calculated the values of these two indices as 0.64 and 2.15, respectively.  

Keywords

Main Subjects

Achite, M., Samadianfard, S., Elshaboury, N., & Sharafi, M. (2022). Modeling and optimization of coagulant dosage in water treatment plants using hybridized random forest model with genetic algorithm optimization. Environ. Develop.  Sustain., 1-19. DOI: 10.1007/s10668-022-02523-z
Alipour, A., Yarahmadi, J., & Mahdavi, M. (2014). Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products. J. Climat., 2014.  DOI: 10.1155/2014/839205
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrig. Drain., paper 56. Fao, Rome, 300(9), D05109.
Breiman, L. (2001). Random forests. Machine Learn., 45(1), 5-32. DOI:  10.1023/a:1010933404324
Douna, V., Barraza, V., Grings, F., Huete, A., Restrepo-Coupe, N., & Beringer, J. (2021). Towards a remote sensing data based evapotranspiration estimation in Northern Australia using a simple random forest approach. J. Arid Environ., 191, 104513. DOI: 10.1016/j.jaridenv.2021.104513
Falamarzi, Y., Palizdan, N., Huang, Y. F., & Lee, T. S. (2014). Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agri. Water Manage., 140, 26-36. DOI: 10.1016/j.agwat.2014.03.014
Feng, Y., Cui, N., Zhao, L., Hu, X., & Gong, D. (2016). Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. J. Hydrol., 536, 376-383. DOI: 10.1016/j.jhydrol.2016.02.053
Hashemi, S., Samadianfard, S., & Sadraddini, A. A. (2022). Evaluation of random forest-genetic algorithm hybrid model in estimating daily solar radiation. Environ. Water Eng., 8(3), 636-653. [In Persion]. DOI: 10.22034/jewe.2022.312038.1654
Hobbins, M. T. (2016). The variability of ASCE standardized reference evapotranspiration: A rigorous, CONUS-wide decomposition and attribution. Trans. ASABE, 59(2), 561-576. DOI: 10.13031/trans.59.10975
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
Khotbehsara, E. M., Daemei, A. B., & Malekjahan, F. A. (2019). Simulation study of the eco green roof in order to reduce heat transfer in four different climatic zones. Result. Eng., 2, 100010. DOI:  10.1016/j.rineng.2019.100010
Khoshkhoo, Y., & Nikmehr, S. (2021). Application of land surface temperature extracted from satellite images for zoning reference evapotranspiration. Environ.  Water Eng., 7(4), 708-722. DOI:  10.22034/jewe.2021.293156.1591
Maeda, E. E., Wiberg, D. A., & Pellikka, P. K. (2011). Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl. Geogra., 31(1), 251-258. DOI: 10.1016/j.apgeog.2010.05.011
Moore, R., & Hansen, M. (2011). Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis. AGU Fall Meeting Abstracts.https://ui.adsabs.harvard.edu/abs/2011AGUFMIN43C..02M/abstract
Pagano, T. S., & Durham, R. M. (1993). Moderate resolution imaging spectroradiometer (MODIS). Proc. SPIE 1939, Sensor Systems for the Early Earth Observing System Platforms. DOI: 10.1117/12.152835  
Tyralis, H., Papacharalampous, G., & Langousis, A. (2019). A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water, 11(5), 910. DOI:  10.3390/w11050910
Valipour, M. (2015). Temperature analysis of reference evapotranspiration models. Meteorol. Appl., 22(3), 385-394. DOI: 10.1002/met.1465
Wang, S., Lian, J., Peng, Y., Hu, B., & Chen, H. (2019). Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agri. Water Manage., 221, 220-230. DOI:   10.1016/j.agwat.2019.03.027
Wang, W., Liang, S., & Meyers, T. (2008). Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens. Environ., 112(3), 623-635.  DOI:  10.1016/j.rse.2007.05.024
Ye, X., Dong, L.-A., & Ma, D. (2018). Loan evaluation in P2P lending based on random forest optimized by genetic algorithm with profit score. Electron. Commerce Res. Appl., 32, 23-36. DOI:  10.1016/j.elerap.2018.10.004
Yu, W., Nan, Z., Wang, Z., Chen, H., Wu, T., & Zhao, L. (2015). An effective interpolation method for MODIS land surface temperature on the Qinghai–Tibet Plateau. IEEE J. Select. Topic. Appl. Earth Observ. Remote Sens., 8(9), 4539-4550. DOI: 10.1109/JSTARS.2015.2464094.
Zhang, Z., Gong, Y., & Wang, Z. (2018). Accessible remote sensing data based reference evapotranspiration estimation modelling. Agri.Water Manage., 210, 59-69. DOI: 10.1016/j.agwat.2018.07.039