نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 استاد، گروه سنجش از دور، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

چکیده

برآورد تبخیر و تعرق مرجع (ET0) یک نیاز اساسی در مدیریت آب کشاورزی است. بااین‌حال، فقدان داده‌های هواشناسی لازم، تخمین ET0 را با استفاده از روش فائو-پنمن-مانتیث در مناطق وسیع‌تر دشوار کرده است. هدف از پژوهش حاضر، بررسی تخمین تبخیر و تعرق مرجع روزانه در دو اقلیم تبریز و رشت، بر اساس دمای سطح زمین سنجنده مادیس (LST) بدست آمده از تصاویر ماهواره­ای است. بر اساس دو مدل جنگل تصادفی (RF) و جنگل تصادفی بهینه‌شده با الگوریتم ژنتیک (GA-RF) برای تخمین مقادیر ET0 استفاده شده است. پارامترهای مورد استفاده در هر دو ایستگاه شامل ترکیب پارامترهای دمای سطح زمین روزانه (LSTday)، دمای سطح زمین شبانه (LSTnight) و میانگین دمای سطح زمین در شب و روز (LSTmeant) است. نتایج نشان داد که LSTmeant توانایی مناسبی در تخمین ET0 در هر دو ایستگاه دارد. در ایستگاه تبریز با اقلیم نیمه‌خشک، مدل GA-RF-7 با 516/0=RMSE و در ایستگاه رشت با اقلیم بسیار مرطوب، مدلGA-RF-5  با  868/0=RMSE بهترین عملکرد را در بین مدل‌های مورد مطالعه داشتند. همچنین، ارزیابی­ها نشان داد که دمای سطح زمین شبانه به‌اندازه دمای سطح زمین روزانه اهمیت داشته و با ترکیب این دو پارامتر نتایج رضایت­بخشی حاصل شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Land Surface Temperature of MODIS Sensor in Estimating Daily Reference Evapotranspiration in Two Different Climates

نویسندگان [English]

  • Hamed Talebi 1
  • Saeed Samadianfard 2
  • Khalil Valizadeh Kamran‬ 3

1 PhD Scholar, Department of Water Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

2 Assoc. Professor, Department of Water Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

3 Professor, Department of Remote Sensing and GIS, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

چکیده [English]

Estimating reference evapotranspiration (ET0) is a fundamental requirement of agricultural water management. However, the lack of necessary meteorological data makes it difficult to estimate ET0 using the FAO-Penman-Monteith equation wider areas. Therefore, this research examines the estimation of daily reference evapotranspiration using MODIS Land Surface Temperature (LST) from satellite imagery in two climates of Tabriz and Rasht. ET0 has been estimated using two random forests (RF) and random forests optimized with genetic (GA-RF) algorithms. The parameters used in both stations include the combination of daily land surface temperature (LSTday), nightly land surface temperature (LSTnight) and average land surface temperature at night, and day (LSTmean). The obtained results indicated that LSTmean has an excellent ability to estimate ET0 in both stations. In Tabriz station with a semi-arid climate, GA-RF-7 model with RMSE=0.516 and in Rasht station with a very humid climate, the GA-RF-5 model with RMSE=0.868, have the best performance among the studied models. Moreover, the evaluations revealed that the temperature of the earth's surface at night is as important as the temperature of the earth's surface during the day, and by combining these two parameters, satisfactory results may be obtained.

کلیدواژه‌ها [English]

  • FAO-Penman-Monteith
  • Genetic Algorithm
  • Random Forest
  • Remote Sensing
Achite, M., Samadianfard, S., Elshaboury, N. and Sharafi, M. (2022). Modeling and optimization of coagulant dosage in water treatment plants using hybridized random forest model with genetic algorithm optimization. Environ. Develop.  Sustain., 1-19. DOI: 10.1007/s10668-022-02523-z
Alipour, A., Yarahmadi, J. and Mahdavi, M. (2014). Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products. J. Climat., 2014. DOI: 10.1155/2014/839205
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrig. Drain., paper 56. Fao, Rome, 300(9), D05109.
Breiman, L. (2001). Random forests. Machine Learn., 45(1), 5-32. DOI: 10.1023/A:1010933404324
Douna, V., Barraza, V., Grings, F., Huete, A., Restrepo-Coupe, N. and Beringer, J. (2021). Towards a remote sensing data based evapotranspiration estimation in Northern Australia using a simple random forest approach. J. Arid Environ., 191, 104513. DOI: 10.1016/j.jaridenv.2021.104513
Falamarzi, Y., Palizdan, N., Huang, Y. F. and Lee, T. S. (2014). Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agri. Water Manage., 140, 26-36. DOI: 10.1016/j.agwat.2014.03.014
Feng, Y., Cui, N., Zhao, L., Hu, X. and Gong, D. (2016). Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. J. Hydrol., 536, 376-383. DOI: 10.1016/j.jhydrol.2016.02.053
Hashemi, S., Samadianfard, S. and Sadraddini, A. A. (2022). Evaluation of random forest-genetic algorithm hybrid model in estimating daily solar radiation. Environ. Water Eng., 8(3), 636-653. DOI: 10.22034/JEWE.2022.312038.1654
Hobbins, M. T. (2016). The variability of ASCE standardized reference evapotranspiration: A rigorous, CONUS-wide decomposition and attribution. Transactions of the ASABE, 59(2), 561-576. DOI: 10.13031/trans.59.10975
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
Khotbehsara, E. M., Daemei, A. B., & Malekjahan, F. A. (2019). Simulation study of the eco green roof in order to reduce heat transfer in four different climatic zones. Result. Eng., 2, 100010. DOI: 10.1016/j.rineng.2019.100010
Khoshkhoo, Y. and Nikmehr, S. (2021). Application of land surface temperature extracted from satellite images for zoning reference evapotranspiration. Environ.  Water Eng., 7(4), 708-722. DOI: 10.22034/jewe.2021.293156.1591
Maeda, E. E., Wiberg, D. A. and Pellikka, P. K. (2011). Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl. Geogra., 31(1), 251-258. DOI: 10.1016/j.apgeog.2010.05.011
Moore, R. and Hansen, M. (2011). Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis. AGU Fall Meeting Abstracts. https://ui.adsabs.harvard.edu/abs/2011AGUFMIN43C..02M/abstract
Pagano, T. S. and Durham, R. M. (1993). Moderate resolution imaging spectroradiometer (MODIS). Sensor Systems for the Early Earth Observing System Platforms. DOI: 10.1117/12.152835
Tyralis, H., Papacharalampous, G. and Langousis, A. (2019). A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water, 11(5), 910. DOI: 10.3390/w11050910
Valipour, M. (2015). Temperature analysis of reference evapotranspiration models. Meteorol. Appl., 22(3), 385-394. DOI: 10.1002/met.1465
Wang, S., Lian, J., Peng, Y., Hu, B. and Chen, H. (2019). Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agri. Water Manage., 221, 220-230. DOI: 10.1016/j.agwat.2019.03.027
Wang, W., Liang, S. and Meyers, T. (2008). Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens. Environ., 112(3), 623-635. DOI: 10.1016/j.rse.2007.05.024
Ye, X., Dong, L.-A. and Ma, D. (2018). Loan evaluation in P2P lending based on random forest optimized by genetic algorithm with profit score. Electron. Commerce Res. Appl., 32, 23-36. DOI: 10.1016/j.elerap.2018.10.004
Yu, W., Nan, Z., Wang, Z., Chen, H., Wu, T. and Zhao, L. (2015). An effective interpolation method for MODIS land surface temperature on the Qinghai–Tibet Plateau. IEEE J. Select. Topic. Appl. Earth Observ. Remote Sens., 8(9), 4539-4550. DOI: 10.1109/JSTARS.2015.2464094.
Zhang, Z., Gong, Y. and Wang, Z. (2018). Accessible remote sensing data based reference evapotranspiration estimation modelling. Agri.Water Manage., 210, 59-69. DOI: 10.1016/j.agwat.2018.07.039.