نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناس ارشد، گروه مهندسی محیط‌زیست، دانشکده محیط‌زیست و منابع طبیعی دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

2 استادیار، گروه محیط زیست، دانشکده کشاورزی، دانشاه آزاد اسلامی واحد رودهن، رودهن، ایران

3 دانشیار، گروه مهندسی محیط‌زیست، دانشکده محیط‌زیست و منابع طبیعی دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

چکیده

با استفاده از فرایندهای فوتوکاتالیستی می‌توان در شرایط ویژه ترکیبات آلی فرار در هوا را کاهش داد. هدف از این مطالعه، ارزیابی کارایی فرایند فوتوکاتالیستی در حضور نانوساختارهای آلی-فلزی مدل Bi2S3@NH2-MIL125(Ti) در کاهش غلظت اتیل­بنزن بود.. پارامترهای دبی جریان هوا (0.5-3 l/m)، اتیل بنزن با غلظت  150-300 ppm و مقدار کاتالیست نشانده شده ((1-3 g/m2 مورد مطالعه قرار گرفت. با افزایش دبی جریان هوای آلوده به اتیل­بنزن، کارایی فرایند از 79% در دبیl/min  5/0 به 41% در دبی l/min 3 کاهش پیدا کرد. با افزایش مقدار کاتالیست نشانده شده بر دیواره راکتور، کارایی فرایند از 65% در دز  g/m2 5/0 به 86% در دز  g/m2 3 افزایش یافت. با افزایش مقدار غلظت ورودی اتیل­بنزن به داخل راکتور، کارایی فرایند از 94% در غلظتppm  150 به 55% در مقدارppm  300 کاهش یافت. شرایط بهینه فرایند در دبی l/m 5/0، غلظت اتیل­بنزن برابرppm 150 و مقدار کاتالیست  g/m23 تعیین شد. درحضور منابع مختلف نوری که شامل پرتو ماورابفش A، C و نور مرئی است، می­توان به­ترتیب 94، 95 و 67% از غلظت اولیه اتیل بنزن را کاهش داد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Efficiency Evaluation of Organic-Metal Nanostructures in Photodegradation of Ethylbenzene from Air Stream

نویسندگان [English]

  • Amir Mohammad Kalantari 1
  • Azita Behbahaninia 2
  • Farideh Atabi 3

1 M.Sc. Student, Department of Environment Engineering, Faculty of Environment and Natural Resource, Islamic Azad University, Science and Research Branch, Tehran, Iran

2 Assist. Professor, Department of Environment, Faculty of Agriculture and base science, Islamic Azad University, Roudehen Branch, Roudehen, Iran

3 Assoc. Professor, Department of Environmental Engineering, Faculty of Environment and Natural Resource, Science and Research Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

By using photocatalytic processes, it is possible to reduce volatile organic compounds in the air under special conditions. The aim of this study was to evaluate the efficiency of the photocatalytic process in the presence of organic-metallic nanostructures model Bi2S3@NH2-MIL125(Ti) in reducing ethylbenzene concentration. The concentration of 150-300 ppm and the amount of deposited catalyst (1-3 g/m2) were studied. By increasing the airflow rate contaminated with ethylbenzene, the efficiency of the process decreased from 79% at 0.5 l/min to 41% at the flow rate of 3 l/min. By increasing the amount of catalyst coated on the reactor wall, the efficiency of the process increased from 65% at a dosage of 0.5 g/m2 to 86% at a dosage of 3 g/m2. By increasing the amount of input concentration. Of ethylbenzene, the efficiency of the process decreased from 94% at a concentration of 150 ppm to 55% at a concentration of 300 ppm. The optimal process conditions were determined at a flow rate of 0.5 l/m, the concentration of ethylbenzene, 150 ppm, and the amount of catalyst, 3.0 g/m2. The presence of different light sources including UV A, C, and visible light could reduce the initial concentration of ethylbenzene by.94, 95, and 67% respectively. 

کلیدواژه‌ها [English]

  • Light Source
  • Nanostructure
  • Photodegradation
  • Volatile Organic Compounds
Alam G. Trovó, Raquel F.P. Nogueira, Ana Agüera, Carla Sirtori, Amadeo R. Fernández-Alba.(2009).Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment. Chemosphere, 77(10), 1292-1298. DOI: 10.1016/j.chemosphere.2009.09.065
Baysal, E., Uzun, U. C., Ertaş, F.N., Goksel, O. and Pelit, L. (2021). Development of a new needle trap-based method for the determination of some volatile organic compounds in the indoor environment. Chemosphere, 277,130251. DOI: 10.1016/j.
Bian, Y., Gu, Y., Zhang, X., Chen, H., Li, Z.  (2021). Engineering BiOBrxI1−x solid solutions with enhanced singlet oxygen production for photocatalytic benzylic CH bond activation mediated by N-hydroxyl compounds. Chin. Chem.Lett. 32(9):2837-2840. DOI: 10.1016/j.cclet.2021.02.006
Chen, Z., Hanna S., Redfern l., Alezi D., Islamoglu T., Farha O. (2019). Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev., 386, 32–49. DOI:  10.1016/j.ccr.2019.01.017
Dey, C., Kundu, T., Biswal, B., Mallic, A. (2014). Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystal. B. Struct. Sci. Cryst Eng. Mater. 70(1), 3-10. DOI: 10.1107/S2052520613029557
Feng, Y., Wang, H., Zhang, S., Zho, Y. and Gao, J. (2019). Metal–Organic frameworks: antibodies@MOFs: an in vitro protective coating for preparation and storage of biopharmaceuticals. Adv. Mater. 31(2), 1970012. DOI: 10.1002/adma.201805148
Guo, J. and Gao, Q. (2021). Enhancement of ethylbenzene removal from contaminated gas and corresponding mechanisms in biotrickling filters by a biosurfactant from piggery wastewater. J. Environ. Manage. 277, 111411. DOI: 10.1016/j.jenvman.2020.111411
Kwong, C., Hui, K. S., Chao, C. Y.,Wan, M. P. (2008). Catalytic ozonation of toluene using zeolite and MCM-41 materials. Environ. Sci. Techno., 42(22), 8504-8509. DOI: 10.1021/es801087f
Li, X.,Pi, Y., Yu, H.,Li, Z. (2018). Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity. Chem. Commun. 54(15), 1917-1920. DOI: 10.1039/C7CC09072B
Liu, J., Yan, Y. and Zhang, H. (2011). Adsorption dynamics of toluene in composite bed with microfibrous entrapped activated carbon. Chemi. Engi. J. 173(2), 456-462. DOI: 10.1016/j.cej.2011.08.004
Lv, S., Tang, Y., Zhang, K., Tang, D. (2018). Wet NH3-triggered NH2-MIL-125(Ti) structural switch for visible fluorescence immunoassay impregnated on paper. Anal. Chem. 90(24), 14121-14125. DOI: 10.1021/acs.analchem.8b04981
Moradi M, Hopke P, Hadei M, Eslami A, Rastkari N, Naghdali Z, Kermani M, Emam B, Farhadi M, Shahsavani A.(2019). Exposure to BTEX in beauty salons: biomonitoring, urinary excretion, clinical symptoms, and health risk assessments. Environ. Monit. Assess., 17, 191(5), 286. DOI: 10.1007/s10661-019-7455-7
Nath, R. K., Zain, M. F. M. and Kadhum, A.  (2014). An investigation of LiNbO3 photocatalyst coating on concrete surface for improving indoor air quality. Constr. Build. Mater., 54, 348-353. DOI: 10.1016/j.conbuildmat.2013.12.072      
Oh, W.-D., Lok, L.W., Veksha, A. and Giannis, A. (2018). Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: performance and mechanistic studies. Chem. Eng. J., 333, 739-749. DOI: 10.1016/j.cej.2017.09.182
Ren, Y. W., Liang, J. X., Bo, L., Dabin, C. and Chaorang S. (2011). 1, 4‐Phenylenediacetate‐based Ln MOFs–synthesis, structures, luminescence, and catalytic activity. Eur. J. Inorg. Chem., 28, 4369-4379.
Saeedi, S., Godini, H., Almasian, M., Shams-Khorramabadi, G., Kamarehie, B., Mostafaie, P. and Taheri, F.(2015). Photocatalytic degradation of phenol in water solutions using zno nanoparticles immobilized on glass. . J. Adv. Environ.Health Res., 3(3), 204-213. DOI: 10.22102/jaehr.2015.40204Saeedi,
Sági, G., Casy, T. and Patzay, G. (2014). Oxidative and reductive degradation of sulfamethoxazole in aqueous solutions: decomposition efficiency and toxicity assessment. J. Radioanal. Nucl. Chem., 301(2), 475-482. DOI: 10.1007/s10967-014-3134-x 
Saldanha, L. A. S., Santos, N. T. G. and Tomaz E. (2021). Photocatalytic ethylbenzene degradation associated with ozone (TiO2/UV/O3) under different percentages of catalytic coating area: Evaluation of process parameters. Sep. Purif. Techno., 263, 118344. DOI:  10.1016/j.seppur.2021.118344
Shu, Y., He, M., Ji, J., Huang, H., Liu, S. and Leung, D. Y. (2019). Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5. Hazard. Mater. 364, 770-779. DOI: 10.1016/j.jhazmat.2018.10.057
Tajik, L., Bahrami, A., Ghiasvand A. and Ghorbani., F. (2017). Determination of benzene, toluene, ethylbenzene and xylene in field and laboratory by means of cold fiber SPME equipped with thermoelectric cooler and GC/FID method. Pol. J. Chem. Technol.,  19(3), 9-15. DOI: 10.1515/pjct-2017-0041   
Wen, J., Xie, J., Chen, X. and Li, X. (2017). A review on g-C3N4-based photocatalysts. Appl. Surf. Sci., 391, 72-123. DOI:  10.1016/j.apsusc.2016.07.030
Yang, S. S. and Gülder, Ö. L. (2021). Sooting propensity dependence on pressure of ethylbenzene, p-xylene, o-xylene and n-octane in laminar diffusion flames. Combust.  Flame., 227, 202-213
Yarahmadi, R, Shah Taheri, S. J. and Salahshour A. (2018). Treatment and elimination of volatile organic compounds using non-thermal plasma in laboratory scale. J. Environ. Sci. Technol.  20(4), 25-34.  DOI: 10.22034/JEST.2018.18444.2763 [In Persian].
Zhang, C., Zhang, J., Ou, K., Liu, Y., Guo, Z., Chen, X., Cheng, G. and Hu, F.(2021). ZIF-8-coated CdS popcorn-like photocatalyst with enhanced visible-light-driven photocatalytic activity for degradation of toluene. Colloid. Surf. A Physicochem. Eng. Asp., 615, 126257.