نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه عمران، دانشکده فنی و مهندسی، دانشگاه مراغه، مراغه، ایران

2 دانش‌آموخته دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 دانشجوی کارشناسی ارشد، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه مراغه، مراغه، ایران

چکیده

تعبیه آستانه در زیر دریچه‌کشویی از جمله راهکارهای کنترل دبی عبوری است. این پژوهش با هدف بررسی عددی ضریب‌دبی دریچه‌کشویی با ارتفاع و عرض‌های مختلف آستانه در شرایط جریان آزاد انجام شد. شبیه‌سازی‌ها با استفاده از نرم‌افزار FLOW-3D  صورت گرفت. نتایج نشان داد که با کاهش بازشدگی، ضریب­دبی افزایش می­یابد چرا که کاهش بازشدگی از 5  به cm  2، ضریب‌دبی در حالت با آستانه را 9% نسبت به حالت بدون آستانه افزایش داد. میزان افزایش  ضریب­دبی دریچه‌کشویی با آستانه به ارتفاع 1و cm 4 نسبت به حالت بدون آستانه به­ترتیب 5/1­ و 18% برآورد شد. بررسی تغییرات عرض آستانه نشان داد که کاهش عرض آستانه، با کاهش در مقدار سرعت و فشار جریان درکناره­های آستانه، ضریب‌دبی را کاهش می‌دهد. تأثیر سه پارامتر بازشدگی دریچه، ارتفاع و عرض آستانه مقایسه گردید. نتایج نشان داد که افزایش عرض آستانه نسبت به دو پارامتر ذکر شده، حداکثر افزایش ضریب‌دبی را به‌همراه دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Numerical Investigation on Effective Parameters on Hydraulic Flows in a Sluice Gate with Sill on Free-Flow Condition

نویسندگان [English]

  • Rasoul Daneshfaraz 1
  • Reza Norouzi 2
  • Parisa Ebadzadeh 3
  • Hamidreza Abbaszadeh 3

1 Professor, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran

2 PhD Alumni, Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

3 M.Sc. Student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran

چکیده [English]

The presence of a sill under the sluice gate is one of the solutions to control the flow rate. This study was conducted to numerically investigate the discharge coefficient (Cd) of sluice gates with different heights and widths of sills in free flow conditions. The simulations were performed using FLOW-3D software. Results show that Cd increases as the gate opening decreases. Also, results showed that reducing the gate opening from 5 cm to 2 cm increases the Cd in the gate with sill by 9% compared to the non-sill gate. Discharge coefficients with 1 cm and 4 cm sills, compared to the non-sill condition were estimated at 1.5% and 18%, respectively. Examination of sill width changes showed that decreasing the width reduces the discharge coefficient by reducing the amount of velocity and flow pressure along the sill sides. The effects of three parameters of the gate opening, sill height, and sill width were compared. The results showed that increasing the sill width compared to the two mentioned parameters has the maximum increase in the Cd.

کلیدواژه‌ها [English]

  • Discharge Coefficient
  • Flow Pattern
  • Flow Pressure
  • Flow Velocity
  • FLOW-3D
Alhamid, A. A. (1999). Coefficient of discharge for free flow sluice gates. J. King Saud. Univ. Eng. Sci., 11(1), 33-47. DOI: 10.1016/S1018-3639(18)30989-9.
Amini, A. and Parto, A. A. (2017). 3D Numerical simulation of flow field around twin piles. J. Acta Geophys., 65, 1243-1251. DOI: 10.1007/s11600-017-0094-x.
Akoz, M., Kirkgoz, M. and Oner A, (2009). Experimental and Numerical Modeling of a Sluice Gate Flow. J. Hydraul. Res., 47(2): 167-176. DOI: 10.3826/jhr.2009.3349.
Aydin, M. and Emre, A. (2017). Numerical modelling of sluice gates with different sill types under submerged flow conditions. J. Sci. Technol., 7(1), 1-6. DOI: 10.17678/beuscitech.310157.
Daneshfaraz, R., Ghahramanzadeh, A. and Ghaderi, A. (2016). Investigation of the Effect of Edge Shape on Characteristics of Flow Under Vertical Gates. J. Am. Water Works Assoc., 108(8), E425- E432. DOI: 10.5942/jawwa.2016.108.0102
Daneshfaraz R, Abbaszadeh H, Gorbanvatan P, and Abdi M, (2021). Application of   Sluice Gate in different Positions and Its Effect on Hydraulic Parameters in Free Flow Condition. J. Hydraulic structures., 7(3), 72-87, DOI: 10.22055/JHS.2022.39208.1196.
Daneshfaraz, R., Noruzi, R. and Ebadzadeh, P. (2022a). Experimental Investigation of non-suppressed sill effect with different geometry on flow pattern and discharge coefficient of sluice. J. Hydraulics, 17(3), DOI: 10.30482/jhyd.2022.316603.1566
Daneshfaraz, R., Norouzi, R., Abbaszadeh, H., Kuriqi, A. and Francesco., S. D. (2022b). Influence of Sill on the Hydraulic Regime in Sluice Gates: An Experimental and Numerical Analysis. J. Fluids. (7) 7, 244. DOI.org/10.3390/fluids7070244.
Daneshfaraz, R., Norouzi, R. and Ebadzadeh, P. (2022c). Experimental and numerical study of sluice gate flow pattern with non- suppressed sill and its effect on discharge coefficient in free-flow conditions.  J. Hydraulic Structures., 8(1), 1-20. DOI: 10.22055/jhs.2022.40089.1201.
Flow Science Inc. (2016). FLOW-3D V 11.2 User’s Manual, Santa Fe, NM, USA.
Ghorbani, M. A., Salmasi, F., Saggi, M. K. and Norouzi, R. (2020). Deep learning under H20 framework: A novel approach for quantitative analysis of discharge coefficient in sluice gates. J. Hydroinform., 22(6), 1603-1619. DOI:10.2166/hydro.2020.003.
Heidari, M., Karami, S. and Adibrad, M. (2020). Investigation of free flow under the radial gate with the sill. J.  Civil Environ. Eng., 50.3(100), 9-19. DOI: 10.22034/jcee.2020.23384.1568
Ilkhanipour Zeinali, R., Mousavi Jahromi, H., Kashefipour Dezfouli, M. and Fathi Mogaddam, M. (2015). Influence of gate plate slope on hydraulic characteristics of sluice gates. J. water Soil Resour. Conserv., 4(4), 1-10 [In Persian]. DOI: https://dorl.net/dor/20.1001.1.22517480.1394.4.4.1.0.
Karami, S., Heidari, M. M. and Adib Rad, M. H. (2020). Investigation of Free Flow Under the Sluice Gate with the Sill Using Flow-3D Model. Iran. J. Sci. Technol. Trans. Civ. Eng., 44, 317–324, Doi: 10.1007/s40996-019-00310-x.
Khalili Shayan, H., Farhodi, J. and Roshan, R. (2014). Estimation of flow discharge under the sluice and radial gates based on contraction coefficient. J. Sci. Technol. Trans. Civ. Eng., 38(C2), 449-463. DOI: 10.22099/ijstc.2014.2421.
  Lin, C. H., Yen, J. F. and Tsai C. T. (2002). Influence of sluice gate contraction coefficient on distinguishing condition. J. Irrig. Drain. Eng., 128(4), 249–252. DOI: 10.1061/(ASCE)0733-9437(2002)128:4(249).
Mohammed, A. and Moayed, K. (2013). Gate Lip Hydraulics under Sluice gate. J. Modern Instrumentation. 2(1), 16-19. Doi: 10.4236/mi.2013.21003.
Negm, A. M., Alhamid, A. A. and El-Saiad, A. A. (1988). Submerged flow below sluice gate with sill. In Proceedings of the International Conferenceon Hydro-Science and Engineering Hydro-Science and Engineering ICHE98, Cottbus/Berlin, Germany, 31 August–3 September, University of Mississippi: Oxford, MS, USA, Advances in Hydro-Science and Engineering; Volume 3.
Rady, R. A. E. H. (2016). Modeling of flow characteristics beneath vertical and inclined sluice gates using artificial neural networks. J. Ain Shams Eng. J., 7(2), 971-924. DOI: 10.1016/j.asej.2016.01.009.
Salmasi, F. and Norouzi, R. (2020). Investigation of different geometric shapes of sills on the discharge coefficient of a vertical sluice gate. J. Amirkabir Civil Eng., 5(2), 1-3 [In Persian] DOI: 10.22060/ceej.2018.14232.5596.
Salmasi, F., Nouri, M., Sihag, P. and Abraham, J. (2021). Application of SVM, ANN, GRNN, RF, GP and RT models for predicting discharge coefficients of oblique sluice gates using experimental data. J. Water Suppl., 21(1), 232-248. DOI: 10.2166/ws.2020.226.
Salmasi, F. and Abraham J. P. (2021).  Prediction of discharge coefficients for sluice gates equipped with different geometric sills under the gate using multiple non-linear regression (MNLR). J. Hydrol., 597, 125728.DOI: 10.1016/j.jhydrol.2020.125728.
Shivapur, V.A. and Prakash Shesha, N.M, (2005). Inclined sluice gate for flow measurement. J. Hydraulic Engineering., 11(1), 46-56. DOI: 10.1080/09715010.2005.10514768.
Yoosefdoost, A. and Lubitz, W. D. (2022). Sluice gate design and calibration simplified models to distinguish flow conditions and estimate discharge coefficient and flow rate. J. Water, 14(8), 1215. DOI: 10.3390/w14081215.