Document Type : Research Paper

Authors

1 M.Sc. Alumni, Department of Surveying Engineering, Faculty of Civil and Surveying Engineering, Kerman Graduate University of Advanced Technology, Kerman, Iran

2 M.Sc. Alumni, Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

3 Ph.D. Alumni, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran

Abstract

Usually, the methods used to identify oil slicks work to identify different slick parts in terms of thickness. Since the spectrum of oil slicks is affected by seawater and the physical and chemical properties of the oil, in this study, using the spectral indices of hydrocarbons (FI, RAI, HI, RG, RR, WAF) and seawater (CHL, CDOM), different thicknesses of oil slicks are investigated and To be different. The IS (index separability) mathematical model based on classroom distance was used to evaluate the spectral indices used quantitatively. The results show that the spectral indices of hydrocarbons are more suitable for distinguishing the emulsion from seawater and other parts of the oil slick. Thus, the value of the IS parameter for the FI index in order to detect and differentiate emulsions with different evaluated segments such as seawater, shining part, code 4 and code 5 are equal to 1.542, 0.967 0.423 and 0.4236, respectively, which are compared spectral indicators of seawater have larger values. On the other hand, the spectral indices of seawater are suitable for detecting the thinner parts of the oil slick .

Keywords

Main Subjects

Alam, M. S., & Sidike, P. (2012). Trends in oil spill detection via hyperspectral imaging. In Proceedings of the 7th Electrical & Computer Engineering (ICECE), Dhaka, Bangladesh., 20–22.
Al Ruzouq, R., Gibril, M. B. A., Shanableh, A., Kais, A., Hamed, O., Al-Mansoori, S., & Khalil, M. A. (2020). Sensors, features, and machine learning for oil spill detection and monitoring: a review. Remote Sens., 12, 3338. DOI: 10.3390/rs12203338  
Alpers, W., Holt, B., & Zeng, K. (2017). Remote sensing of environment oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ., 201, 133–147.  DOI: 10.1016/j.rse.2017.09.002
Aghajanloo, K., Mohammadi, M., Yadegar Azadi, M., & Ghatei, F. (2022). Vulnerability assessment of the northern coasts of the Persian Gulf to oil spills. Environ. Water Eng., 8(1), 47-62 [In Persian]. DOI: 10.22034/jewe.2021.273904. 1524
Bigdeli, B., & Samadzadegan. F. (2015). Classification of hyperspectral data using a band grouping-based SVM ensemble system. J. Geomath. Sci. Technol., 4(3), 253-286 [In Persian].
Chehresa, S.,   Amirkhani, A., Rezairad,  G., & and  Mosavi, M. (2016). Optimum features selection for oil spill detection in SAR Image. J. Indian Soc. Remote Sens., 44, 775–787. DOI: 10.1007/s12524-016-0553-x
Carpenter, A. (2007). The Bonn agreement aerial surveillance programme: trends in North Sea oil pollution 1986-2004. Mar. Pollut. Bull., 54, 149-163. DOI: 10.1016/j.marpolbul.2006.07.013 
Darabinia, M., & Nagafi, M. (2013). Performance of Kuwait regional convention on Persian Gulf marine environment. J. Mazandaran Univ. Med. Sci., 22(96), 71-78 [In Persian].
Das, S., Abraham, A., & Konar. A. (2007). Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man cybernet. A: Syst. Human., 38(1), 218-237. DOI: 10.1109/TSMCA. 2007.909595
Fingas, M., & Brown, C. (2017). A review of oil spill remote sensing. Sensor., 18, 91. DOI: 10.3390/s18010091
Ghanavati, E., Shah Hosseini, M., & Marriner, N. (2021). Analysis of the makran coastline of Iran’s vulnerability to global sea-level rise. J. Mar. Sci. Eng., 9, 891. DOI: 10.3390/jmse9080891
Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach three—Band reflectance difference. J. Geophys. Res. Ocean., 117. DOI: 10.1029/2011JC007395
Johnsiz, A., & Pirmohammadi, S. (2021). The PGCC's security strategy towards Iran (2011-2018). Fundament. Appl. Stud. Islam. World, 2(4), 1-28 [In Persian].
Javanbakht, M. (2021). plastic waste and oil pollution; two important environmental pollutants in the Persian Gulf. J. Mar. Med., 2(4), 199-204. Doi: 10.30491/2.4.199
Kühn, F., Oppermann, K., & Hörig, B. (2004). Hydrocarbon index—an algorithm for hyperspectral detection of hydrocarbons. Int. J. Remote Sens., 25, 2467–2473. DOI: 10.1080/01431160310001642287
Loos, E., Brown, L., Borstad, G., Mudge, T., & Alvare, M. (2012) Characterization of oil slicks at sea using remote sensing techniques. In Proceedings of the OCEANS, Yeosu, Korea. DOI:10.1109/OCEANS.2012.6405033
Mir Alizadehfard, S., & Mansouri, S. (2019). Evaluation of indicators of remote sensing measurement in quantitative and qualitative studies of surface water with Landsat-8 satellite images (Case study: South of Khuzestan province). J. RS GIS Nat. Resour., 10(2), 63-84. [In Persian]. DOI: 20.1001.1.26767082.1398.10.2.5.4
Momeni Esfahani, M. and Amini, A. (2021). Optimal band selection of landsat-8 images for estimation of CDOM of lakes using support vector regression, Iran. J. Remote Sens. GIS, 13(1), 75-92 [In Persian]. DOI: 10.52547/gisj.13.1.75
Mthembu, L., & Marwala, T. (2008). A note on the separability index. arXiv: Methodology. DOI: 10.48550/arXiv.0812.1107
Pourhaimi, S. A., Heidari, F., Heidari, M., & Hoshyari, S. (2015). The legal system for the protection of the environment of the Persian Gulf against pollution. The first comprehensive international conference on the environment, Tehran [In Persian].
Salas, E. A. L. (2017). Vegetation water content prediction: towards more relevant explicatory waveband variables. Preprints.org., 2017010001 DOI: 10.20944/preprints201701.0001.v1
Sun, P. (2013). Study of prediction models for oil thickness based on spectral curve. Spectrosc. Spectr. Anal., 33, 1881–1885. DOI: 10.3964/ j.issn.1000-0593(2013)07-1881-05
Sentinel-2. (2018). The Long Term Archive. (n.d.). Retrieved Jan 26, 2018. Available online at: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-sentinel-2.
Svejkovsky, J., Hess, M., Muskat, J., Nedwed, T. J., McCall, J., & Garcia, O. (2016). Characterization of surface oil thickness distribution patterns observed during the deepwater horizon (MC-252) oil spill with aerial and satellite remote sensing. Mar. Pollut. Bull., 110(1), 162–176. DOI: 10.1016/j.marpolbul.2016.06.066
Talebpour, N., Safarrad, T., Akbarinasab, M. and Rasolian, M. (2018). Investigation of proper index of oil spill detection using Space-Borne Sentinel-2 (Case study: the Persian Gulf, 15 Feb 2016). J. Oceanogra., 9(33), 31-40 [In Persian] DOI: 10.29252/joc.9.33.31
Zhang, Y., Li, Y., Liang, X. S., & Tsou, J. (2017). Comparison of oil spill classifications using fully and compact polarimetric SAR images. Appl. Sci., 7, 193. DOI: 10.3390/app 7020193
Zhao, D., Cheng, X., Zhang, H., Niu, Y., Qi, Y., & Zhang, H. (2018). Evaluation of the ability of spectral indices of hydrocarbons and seawater for identifying oil slicks utilizing hyperspectral images. Remote Sens., 10, 421. DOI: 10.3390/rs10030421