Document Type : Research Paper

Authors

1 M.Sc. Student, Department of Soil Science, Faculty of Agriculture and Natural resources, Lorestan University, Khoramabad, Iran

2 Assist. Professor, Department of Soil Science, Faculty of Agriculture and Natural resources, Lorestan University, Khoramabad, Iran

3 Professor, Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

4 Assist. Professor, Department of water engineering, Faculty of Agriculture and Natural resources, Lorestan University, Khoramabad, Iran

Abstract

To investigate the effect of biofertilizers in reducing the effect of water stress in fenugreek, a factorial experiment was carried out based on randomized complete blocks with three replications of water stress treatments at five levels and biofertilizer at four levels in a pot in the greenhouse. The characteristics of shoot dry weight, water use efficiency, photosynthetic pigments (chlorophyll (a and b), electrical conductivity, pH, aggregate stability, urease enzyme, and acidic and alkaline phosphatase of the soil were investigated. The results showed that under no stress conditions and mycorrhiza fertilizer,  the most shoot dry weight, water use efficiency, chlorophyll a, mean diameter weight and urease enzyme were 4.12 g/pot, 0.75 g/l, 13.25 (mg/g leaf wet weight), 0.77 mm and 89.94 (mg/g leaf wet weight), respectively. Mycorrhiza fertilizer under stress conditions increased shoot dry weight, water use efficiency, chlorophyll a, b, soil electrical conductivity, aggregate stability, urease enzyme, and acidic and alkaline phosphatase, while it decreased soil pH compared with not using biofertilizer in these conditions

Keywords

Main Subjects

Akhzari, D., Attaeian, B., Arami, A., Mahmoodi, F. and Aslani, F. (2015). Effects of Vermicompost and Arbuscular Mycorrhizal Fungi on Soil Properties and Growth of Medicago polymorpha L. J. Compost. Sci. Util., 23(1), 142-153. DOI:10.1080/1065657X.2015.1013585
Ahmadi Azar, F., Hasanlu, T., Imani, A. and Faizi Asl, V. (2015). Water stress and mineral zeolite application on growth and some physiological characteristics of Mallow (Malva sylvestris). J. Plant. Res., 28 (3), 459-474 [In Persian]. DOI: 20.1001.1.23832592.1394.28.3.1.0
Auge, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil. Sci., 84(4), 373–381. DOI:10.4141/S04-002
Ahmadimoghafam, Z., Tabatabaei, S. H. and Ebraahimi, A. (2021). Simultaneous effects of deficit irrigation and preferential flow on E. Coli retention in soil. Iran. J. Irrig. Drain., 6(14), 2203-2216 [In Persian]. 
Blanco-Canqui, H., and Lal, R. (2009). Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil. Sci. Soc. Am. J., 73(2), 418 – 426. DOI: 10.2136/sssaj2008.0141.
Badvi, H., Alemzade Ansari, N., Mahmoodi Sorestani, M., and Eskandari, F. (2016). The effect of drought stress and mycorrhiza on some morphophysiological characteristics of lettuce. J. plant prod. Sci., 38 (3), 27-39 [In Persian].DOI: 10.22055/ppd.2015.11444
Bi, Y., Zhang, Y., and Zou, H. (2018). Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. Int. J. Coal. Sci. Technol., 5(12), 1. 1-7. DOI: 10.1007/s40789-018-0201-x.
Di Stasio, E., Van Oosten, M. J., Silletti, S., Raimondi, G., dell'Aversana, E., Carrillo, P. and Maggio, A. (2018). Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. J. Appl. Physiol., 30 (4), 2675- 2686. DOI: 10.1007/s10811-018-1439-9.
Dordipour, E., Ghadiri, H. and Hussein, J. (2007). The influence of salinity and sodicity on soil erodibility, sediment transport and downstream water quality from three contrasting soils. J. Agric. Sci. Natur. Resour., 14(4),41-52 [In Persian].
Eyras, M. C., Defosse, G. E., and Dellatorre, F. (2008). Seaweed compost as an amendment for horticultural soils in Patagonia, Argentina. J. Compost. Sci. Util., 16(2), 119-124. DOI: 10.1080/1065657X.2008.10702366.
Esmaielpour, B., Fatemi, H., and Moradi, M. (2020). Effects of Seaweed Extract on Physiological and Biochemical Characteristics of Basil (Ocimum basilicum L.) under Water-Deficit Stress Conditions. Journal of Science and Technology of Greenhouse Culture., 11 (1), 59-69 [In Persian]. DOI: 20.1001.1.20089082.1399.11.1.5.9
Egamberdiyeva, D. (2007). The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil. Ecol., 36(2), 184-189. DOI:10.1016/j.apsoil.2007.02.005.
Farhadi, A., Enayatizamir, N., Farrokhian Firouzi, A., and Howeizeh, H. (2017). The Effect of Arbuscular Mycorrhizal Fungi and drought stress on glomalin content and some physical and mechanical properties of soil under blue panic grass cultivation (Panicum antidotal). J. Soil Water Conserv., 23(5), 267-280 [In Persian].DOI: 10.22069/jwfst.2017.10471.2493
Feizian, M., Hemmati, A., Asadi Rahmani, H., and Azizi, K. (2016). Evaluation of the effects of Rhizobium bacterial strains on yield and yield components of Phaseolus vulgaris L. under drought stress conditions. J. Soil. Biol., 4(2), 165-176. [In Persian]. DOI: 10.22092/sbj.2017.109311
Giri, B., Kapoor, R., Mukerji, K. J. B., and Soils, F. O. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. J. Biol. Fertil. Soils., 38(1), 170-175.  DOI:10.1007/s00374-003-0636-z.
Guili, E., Mousavi, S. A., and Kamgar Haghigh, A. A. (2017). Effect of cattle manure biochar and moisture stress on growth characteristics and spinach water use efficiency in greenhouse conditions. J. Water Res. Agri., 30(2), 243-259 [In Persian]. DOI: 10.22092/jwra.2016.106647
Gardner, F. P. (2010). Physiology of crop plants. Scientific Publishers (India), Crops. 327 pp.
Hosseini Nejad, S. M., Masoud Sinaki, J., Biabani, A., and Abedini Esfahalani, M. (2017). Investigation of the effects of drought stress and mycorrhiza on yield and some agronomic and physiological traits of sunflower cultivars. Agron. J. (Pajouhesh & Sazandegi)., 29(110), 95-102 [In Persian].
Heydari, L., Bayat, H. and Hamzei, J. (2020b). Short-term effects of biofertilizer application on some physical and chemical properties of soil. J. Soil Water Conserv., 27(1), 71-89 [In Persian]. DOI: 10.22069/jwsc.2020.16986.3238
Heydari, L., Bayat, H., Hamzei, J., Ghytasi Rangbar, T., Bahramian Ragheb, S. and Madine Khorrami, F. (2020a). Effects of chickpea inoculation with rhizobium (Mesorhizobium caesar) and mycorrhizae (Glomus mosseae) on soil structural stability and aggregates size distribution under both greenhouse and field conditions. J. Soil Water, 33(6), 897-911 [In Persian]. DOI: 10.22067/jsw.v33i6.79810.
Haghparast, M., Maleki-Farahani, S., Sinaki, J. M. and Zarei, G. (2012). Mitigation of drought stress in chickpea through application of humic acid and seaweed extract. J. Crop Prod. Environ. Stress., 4(1), 59–71.
Huixing, S. (2005). Effects of VAM on host plant in the condition of drought stress and its mechanisms. Electron. J. Biol., 1(3), 44-48.
Hidangmayum, A. and Sharma. R. (2017). Effect of different concentrations of commercial seaweed liquid extract of Ascophyllum nodosum as a plant biostimulant on growth, yield and biochemical constituents of onion (Allium cepa L.). J. Pharmacogn. Phytochem, 6(4), 658-663. DOI
James, B., Rodel, D., Lorettu, U., Reynaldo, E.,  and Tariq, H. (2008). Effect of vesicular arboscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of Senna spectabilis. Pak. J. Bot., 40(5), 2217-2224.
Kramer, P. J. (1983). Water Relations of Plants. Acdemeic Press, Florida, USA.
Kramer, S., and Green, D. M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. J. Soil. Biol. Biochemi., 32(2), 179-188. DOI: 10.1016/S0038-0717(99)00140-6.
Khazaei, M., Galavi, M., Dahmardeh, M., Moosavi-Nik, S. M., Zamani, Gh., and Mahdi-Nejad, N. (2018). Effect of Drought Stress on Water Use Efficiency and Its Components in Several Genotypes and Cultivars of Foxtail Millet (Setaria italica L.). Iran. J. Field Crop. Res., 16(1), 113-124 [In Persian].
Lichtenthaler, H. K. (1987). Chlorophylls and cartenoides pigments of hotosynthetice biomembranes. Method. Enzymol., 148, 350-382.
Mardani, S., Tabatabaei, S, H., Pessarakli, M., and Zareabyaneh, H. (2017). Physiological responses of pepper plant (Capsicum annuum L.) to drought stress. J. Plant. Nutr., 40 (10), 1453-1464. DOI: 10.1080/01904167.2016.1269342.
Mclean, E. O. (1982). Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2, Second Edition, 199-224. DOI: 10.2134/agronmonogr9.2.2ed.c12
Nisha, R., Kaushik, A. and Kaushik, C. P. (2007). Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma., 138(1), 49-56. DOI: 10.1016/j.geoderma.2006.10.007.
Possinger, A. R. and Amador, J. A. (2016). Preliminary evaluation of seaweed application effects on soil quality and yield of sweet corn (Zea mays L.). Commun. Soil. Sci. Plant. Anal., 47(1), 121-135. DOI: 10.1080/00103624.2015.1104338.
Pascual, I., Carmen Antolin, M., and Garcia, C. (2006). Effect of water deficit on microbial characteristics in soil amended with sewage sludge or inorganic fertilizer under laboratory cinditions. Bioresour. Techno. J. 98(1), 29-37. DOI: 10.1016/j.biortech.2005.11.026.
Rishcefid, M., Aliasgharzad, N., and Neyshabouri, M. R. (2017). Effects of Water Deficit Stress on Glomalin Secretion by Glomerales in Symbiosis with Corn Plant. J. Soil Water Sci., 21(1), 229-238 [In Persian]. DOI: 10.18869/acadpub.jstnar.21.1.229
Rezaei, R., Raisi, F., and Ghorbani, Sh. (2011). Effects of drought stress on soil enzyme activity. Proc. 2011, First National Congress of New Agricultural Sciences and Technologies [In Persian].
Sadeghzadeh-Ahari, D., Hassandokht Kashi, A. K., Amri, A. and Alizadeh, K. H. (2010). Genetic variability of some agronomic traits in the Iranian fenugreek landraces under drought stress and non-stress conditions African. J. Plant. Sci., 4, 12-20 [In Persian].
Sibi, M., Khazaei, H. R., and Nezami, A. (2017). Effect of concentration, time and method of consumption of seaweed extract on some morphological features Safflower plant roots and shoots. J. Plant Physiol., 8(29), 238-252 [In Persian].
Siddiky, M. R. K., Kohler, J., Cosme, M. and Rillig, C. (2012). Soil biota effects on soil structure: Interactions between arbuscular mycorrhizal fungal mycelium and collembolan. J. Soil. Biol. Bio., 50(1), 33–39. DOI: 10.1016/j.soilbio.2012.03.001.
Sridhar, S. and Rengasamy, R. (2011). Effect of seaweed liquid fertilizer on growth, pigment concentration and yield of Amaranthus rosburghinus and Amaranthus tricolor under field trial. J. Curr. Res., 3(7), 131-134.
Sulfab, H. A. (2013). Effect of bioorganic fertilizers on soil fertility and yield of groundnut (Arachis hypogaea L.) in Malakal Area, Republic of South Sudan. J. Nat. Resour. Environ. Studies., 12, 14-19.
Shahhosseini, Z., Gholami, A. and Asghari, H. (2012). Effect of arbuscular mycorrhizae and humic acid on water use efficiency and physiological growth indices of maize under water deficit condition. J. Arid Biom., 2(1), 39-57 [In Persian]. DOI: 20.1001.1.2008790.1391.2.1.4.9
Samaei, F., Asghari, Sh., and Aliasgharzad, N. (2015). The effects of two arbuscular mycorrhizal fungi on
some physical properties of a sandy loam soil and nutrients uptake by spring barley. J. Soil Environ., 1(1), 1-9 [In Persian].
Shamshiri, M. H., Bagheri, V, Alaei, H. and Salehi, H. (2020). Investigating the role of three species of arbuscular mycorrhizal fungi on growth, acid phosphatase enzyme activity and phenolic compounds in zinnia plant under drought stress conditions. J. Crop Product.  Process., 9(4), 65-81. DOI: 20.1001.1.22518517.1398.9.4.4.9.
Sheteawi, S. A. and Tawfik, K. M. (2007). Interaction effect of some biofertilizers and irrigation water regime on mung been (Vigna radiata) growth and yield. J. Appl. Sci. Res., 3(3), 251-262.
Tabatabai, M. A., Weave R .W., Angle S., Bottomley P., Bezdicek D., Smith S., Tabatabai, A., and Wollum, A. (1994). Soil enzyme, In: Weaver RW et al., (Ed.) Methods in soil Analysis, Part 2: Microbiological and Biochemical properties, pp. 775-834.
Tabatabai, M. A. (1982). Soil enzymes In: Page, A.L., Miller, R.H. and Keeney, D.R., Eds., Methods of Soil Analysis, ASA, SSSA, Publisher, Madison, WI, 903-947.