Document Type : Research Paper

Author

Assoc. Professor, Department of Water Engineering, Faculty of Agriculture, Fasa University, Fasa, Iran

Abstract

In this study, hydroxyapatite-supported zero-valent iron nanoparticle was synthesized by the sodium borohydride reduction method. To evaluate the performance of adsorbent for the removal of Cu(II) and Ni(II) ions, the influence of different sorption parameters, such as contact time, temperature, initial concentration of metal ions, the dosage of adsorbent, and pH value of the solutions were investigated. The highest removal efficiency of both metals occurred under the optimal conditions of 7, 45 min, 0.1, 50 ºC, and 5 mg/l for pH, contact time, adsorbent mass, temperature, and initial concentration, respectively. The kinetic and equilibrium data were well fitted by the pseudo-second-order model and Langmuir- Freundlich model, respectively. The maximum adsorption capacities of adsorbent towards Cu(II) and Ni(II) were 138 and 108 mg/g, respectively. The results indicated that the adsorbent could remove the majority of metals (95%) within 40 min without pH control. Thermodynamic parameters, i.e., ΔG°, ΔH°, and ΔS°, indicated that the sorption process was spontaneous and thermodynamically favorable. 

Keywords

Main Subjects

Arshadi, M., Amiri, M. J. and Mousavi, S. (2014). Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd (II), Cu(II) and Co(II) adsorption on barley straw ash. Water Resour. Ind., 6, 1–17. DOI: 10.1016/j.wri.2014.06.001.
Arshadi, M., Mehravar, M., Amiri, M. J. and Faraji, A. R. (2015). Synthesis and adsorption characteristics of an heterogenized manganese nanoadsorbent towards methyl orange. J. Colloid Interface Sci., 440, 189-197. DOI: 10.1016/j.jcis.2014.10.053.
Amin, N. K., Abdelwahab, O. and El-Ashtoukhy, E. S. Z. (2015). Removal of Cu(II) and Ni(II) by ion exchange resin in packed rotating cylinder. Desalin. Water Treat., 55, 199-209. DOI: 10.1080/19443994.2014.913208.
Amiri, M. J., Abedi-koupai, J. and Eslamian, S. (2017a). Adsorption of Hg(II) and Pb(II) ions by nanoscale zero-valent iron supported on ostrich bone ash in a fixed-bed column system. Water Sci. Technol., 76(3), 671-682. DOI: 10.2166/wst.2017.252.
Amiri, M. J., Abedi-koupai, J., Eslamian, S. and Arshadi, M. (2016). Adsorption of Pb(II) and Hg(II) ions from aqueous single metal solutions by using surfactant-modified ostrich bone waste. Desalin. Water Treat., 57(35), 16522-16539. DOI: 10.1080/19443994.2015.1079253.
Amiri, M. J., Abedi-Koupai, J., Eslamian, S. S., Mousavi, S. F., Arshadi, M. (2013). Modelling Pb(II) adsorption based on synthetic and industrial wastewaters by ostrich bone char using artificial neural network and multivariate non-linear regression. Int. J. Hydrol. Sci. Technol., 3, 221–240. DOI: 10.1504/IJHST.2013.058313.
Amiri, M. J., Abedi-koupai, J., Jalali, S. M. J. and Mousavi, S. F. (2017b). Modeling of fixed-bed column system of Hg (II) ions on ostrich bone ash/nZVI composite by artificial neural network. J. Environ. Eng.-ASCE., 143, 04017061. DOI: 10.1061/(ASCE)EE.1943-7870.0001257.
Amiri, M. J., Roohi, R. and Gil, A. (2018). Numerical simulation of Cd(II) removal by ostrich bone ash supported nanoscale zero-valent iron in a fixed-bed column system: Utilization of unsteady advection-dispersion-adsorption equation. J. Water Process. Eng., 25, 1-14. DOI: 10.1016/j.jwpe.2018.05.017.
Bahrami, M., Amiri, M. J. and Dehkhodaie, F. (2021). Effect of different thermal activation on hydroxyapatite to eliminate mercury from aqueous solutions in continuous adsorption system. Int J Environ. Anal. Chem., 101(14), 2150-2170. DOI: 10.1080/03067319.2019.1700237.
Dong, L., Zhua, Z., Qiu, Y. and Zhao, J. (2010). Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chem. Eng. J., 165, 827–834. DOI: 10.1016/j.cej.2010.10.027.
Efecan, N., Shahwan, T., Eroğlu, A. E. and Lieberwirth, I. (2009). Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI). Desal., 249, 1048–1054. DOI: 10.1016/j.desal.2009.06.054.
Eslamian, S. S., Amiri, M. J., Abedi-Koupai, J. and Shaeri-Karimi, S. (2013). Reclamation of unconventional water using nano zero-valent iron particles: an application for groundwater. Int. J. Water, 7(1/2), 1–13. DOI: 0.1504/IJW.2013.051975.
Gil, A., Amiri, M. J., Abedi-Koupai, J. and Eslamian, S. (2018). Adsorption/reduction of Hg (II) and Pb (II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions. Environ. Sci. Pollut. Res., 25, 2814–2829. DOI: 10.1007/s11356-017-0508-y.
Hamdy, A. (2021). Experimental study of the relationship between dissolved iron, turbidity, and removal of Cu(II) ion from aqueous solutions using zero-valent iron nanoparticles. Arab J Sci Eng., 46, 5543–5565. DOI: 10.1007/s13369-020-05079-0.
Harman, B. I. and Genisoglu, M. (2016). Synthesis and Characterization of Pumice-Supported nZVI for Removal of Copper from Waters. Adv. Mater. Sci. Eng., 4372136. DOI: 10.1155/2016/4372136.
Hu, S., Lin, X., Zhao, W. and Luo, X. (2018). Efficient simultaneous removal of U(VI) and Cu(II) from aqueous solution using core–shell nZVI@SA/CMC-Ca beads. J Radioanal. Nucl. Chem., 315, 223–235. DOI: 10.1007/s10967-017-5662-7.
Kadirvelu, K., Faur-Brasquet, C. and Le Cloirec, P. (2000). Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. ACS Publications. Collection., 16(22), 8404–8409. DOI: 10.1021/la0004810.
Li, S., Wang, W., Yan, W. and Zhang, W. )2014(. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ. Sci.: Process. Impacts., 16, 524-533. DOI: 10.1039/C3EM00578J
Ma, F., Zhao, B., Diao, J., Jiang, Y., Zhang, J. (2020). Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron. RSC Adv., 10, 39217-39225. DOI: 10.1039/D0RA07391A.
Mohsen-Nia, M., Montazeri, P. and Modarress, H. (2007). Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desal., 217 (1–3), 276-281. DOI: 10.1016/j.desal.2006.01.043.
Mortazavian, S., An, H., Chun, D. and Moon, J. (2018). Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies. Chem Eng J., 353, 781-795. DOI: 10.1016/j.cej.2018.07.170.
Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Ann. Agrar. Sci., 15, 278-286. DOI: 10.1016/j.aasci.2017.04.001.
Poguberović, P. P., Krčmar, D. M., Dalmacija, B. D., Maletić, S. P., Tomašević-Pilipović, D. D., Kerkez, D. V. and Rončević, S. D. (2016). Removal of Ni(II) and Cu(II) from aqueous solutions using 'green' zero-valent iron nanoparticles produced by oak and mulberry leaf extracts. Water Sci Technol., 74(9), 2115-2123. DOI: 10.2166/wst.2016.387.
Raychoudhury, T. and Scheytt, T. (2013). Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review. Water Sci. Technol., 68(7), 1425-39. DOI: 10.2166/wst.2013.358.
Shamohammadi, S. and Bardsiri, M. S. (2011). Removal of nickel from aqueous solution by hard-shell pistachios. J. Water Wastewater, 24(2), 80-87 [in Persian].
Sobhanardakani, S., Ahmadi, M. and Zandipak, R. (2016). Efficient removal of Cu(II) and Pb(II) heavy metal ions from water samples using 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles. Aqua., 65(4), 361–372. DOI: 10.2166/aqua.2016.100
Sobhanardakani, S., Parvizimosaed, H. and Olyaie, E. (2013). Heavy metals removal from wastewaters using organic solid waste-rice husk. Environ. Sci. Pollut. Res., 20(8), 5265-5271. DOI: 10.1007/s11356-013-1516-1.
Sobhanardakani, S. and Zandipak, R. (2015). 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples. Environ. Monit. Assess., 187, 412. DOI: 10.1007/s10661-015-4635-y
Sobhanardakani, S., Zandipak, R., Parvizimosaed, H., Javanshir Khoei, A., Moslemi, M., Tahergorabi, M., Hosseini, S. M. and Delfieh, P. (2014). Efficiency of chitosan for the removal of Pb(II), Fe(II) and Cu (II) ions from aqueous solutions. Iran. J. Toxicol., 8(26), 1145-1151.
Wang, J. and Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnol. Adv., 27(2), 195–226. DOI: 10.1016/j.biotechadv.2008.11.002.
Zandipak, R. and Sobhanardakani, S. (2017). Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technol Environ Policy. 19(7), 1913-1925. DOI: 10.1007/s10098-017-1374-5.
Zeng, H., Lu, L., Gong, Z., Guo, Y., Mo, J., Zhang, W. and Li, H. (2019). Nanoscale composites of hydroxyapatite coated with zero valent iron: preparation, characterization and uranium removal. J. Radioanal. Nucl. Chem., 320, 165–177. DOI: 10.1007/s10967-019-06451-7.
Zhang, X., Lin, S., Chen, Z., Megharaj, M. and Naidu, R. (2011). Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Res., 45, 3481–3488. DOI: 10.1016/j.watres.2011.04.010.
Zhang, X., Lin, S., Lu, XQ. and Chen, Z-L. (2010). Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chem Eng J., 163, 243–248. DOI: 10.1016/j.cej.2010.07.056.