Document Type : Research Paper

Authors

1 M.Sc., Department of Mechanical Engineering, Faculty of Mechanical Engineering, Qom University of Technology, Qom, Iran

2 Assist. Professor, Department of Mechanical Engineering, Faculty of Mechanical Engineering, Qom University of Technology, Qom, Iran

Abstract

Recently, the use of carbon nanotubes in water treatment membranes has been proposed. Understanding the mechanism of the process in nanotubes may have a significant impact on the development of this technology. In this study, to clarify the molecular mechanism and measure the impact of the effective factors, the water desalination process by filters consisting of carbon nanotubes has been investigated by the molecular dynamics simulation method. The effect of factors such as nanotube diameter applied pressure and porosity on the process is studied. The results showed that reducing the filtration pressure increases salt rejection. However, reducing the pressure reduces the water flow through the nanotubes, which should be considered in the optimal design of the treatment system. Increasing the porosity of the membrane for a given nanotube does not have a significant effect on the desalination rate, but it greatly increases the flow rate. The simulation results showed that if the geometry studied in this study is used as a filter for nanotubes (10, 10), the flow rate of water at a pressure of 100 MPa will be equal to 7 mL/s per unit cross-section of the filter.

Keywords

Main Subjects

AbdAllah, A., El-Sallamy, W., Azzam, B. and Osman, T. (2020). Improving water desalination efficiency by using carbon nanotubes as pre-treatment. In IOP Conference Series: Materials Science and Engineering, 973(1), 012016. DOI: 10.1088/1757-899X/973/1/012016/meta
Abdelkareem, M. A., Assad, M. E. H., Sayed, E.                T. and Soudan, B. (2018). Recent progress in the use of renewable energy sources to power water desalination plants. Desal., 435, 97-113. DOI: 10.1016/j.desal.2017.11.018
Adibfar, A. and Shirkhodaeai, E. (2010). Water desalination: Principles and Methods. Pendar e Pars, Tehran [In Persian].
Ahmad, A. and Azam, T. (2019). Water purification technologies. In Bottled and Packaged Water (pp. 83-120). Woodhead Publishing. DOI: 10.1016/B978-0-12-815272-0.00004-0
Ali, A., Tufa, R. A., Macedonio, F., Curcio, E. and Drioli, E. (2018). Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev., 81, 1-21. DOI: 10.1016/j.rser.2017.07.047
Ang, E.Y., Toh, W., Yeo, J., Lin, R., Liu, Z., Geethalakshmi, K. R. and Ng, T. Y. (2020). A review on low dimensional carbon desalination and gas separation membrane designs. J. Membr. Sci., 598, 117785. DOI: 10.1016/j.memsci.2019.117785
Gupta, S., Henson, A., Evans, B. and Meek, R. (2019) Graphene-based aerogels with carbon nanotubes as ultrahigh-performing mesoporous capacitive deionization electrodes for brackish and seawater desalination. Water Desal. Treat., 162, 97-111. DOI: 10.5004/dwt.2019.24338
Hadidi, H. and Kamali, R. (2020). Non-equilibrium molecular dynamics simulations of water transport through plate-and hourglass-shaped CNTs in the presence of pressure difference and electric field. Comput. Mater. Sci., 185, 109978. DOI: 10.1016/j.commatsci.2020.109978
Hollingsworth, S. A. and Dror, R. O. (2018) Molecular dynamics simulation for all. Neuron, 99(6), 1129-1143. DOI: 10.1016/j.neuron.2018.08.011
Hong, Y., Zhang, J., Zhu, C., Zeng, X. and Francisco, J. (2019). Water desalination through rim functionalized carbon nanotubes. J. Mater. Chem. A, 7(8), 3583-91. DOI: 10.1039/C8TA10941A
Lim, Y. J., Goh, K., Kurihara, M. and Wang, R., (2021). Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication–A review. J. Membr. Sci., 629, 19292. DOI: 10.1016/j.memsci.2021.119292
Liu, Y., Xie, D., Song, M., Jiang, L., Fu, G., Liu, L. and Li, J. (2018). Water desalination across multilayer graphitic carbon nitride membrane: Insights from non-equilibrium molecular dynamics simulations. Carbon, 140, 131-138. DOI: 10.1016/j.carbon.2018.08.043
Majumder, M., Chopra, N., Andrews, R. and Hinds, B. J. (2005). Enhanced flow in carbon nanotubes. Nat., 438(7064), 44-44. DOI: 10.1038/438044a.
Mayo, S., Olafson, B. and Goddard, W. (1990). DREIDING: a generic force field for molecular simulations. J. Phys. Chem., 94(26), 8897-909. DOI: 10.1021/j100389a010
Mendonca, B. H., de Freitas, D. N., Köhler, M. H., Batista, R. J., Barbosa, M. C. and de Oliveira, A. B. (2019). Diffusion behaviour of water confined in deformed carbon nanotubes. Phys. A: Statist. Mechanic.  Appl., 517, 491-498. DOI: 10.1016/j.physa.2018.11.042
Panahi, A., Shomali, A., Sabour, M. H. and Ghafar-Zadeh, E. (2019). Molecular dynamics simulation of electric field driven water and heavy metals transport through fluorinated carbon nanotubes. J. Mole. Liq., 278, 658-671. DOI: 10.1016/j.molliq.2019.01.084
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117(1),1–19. DOI: 10.1006/jcph.1995.1039
Qu, X., Alvarez, P. J. and Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Res., 47(12), 3931-3946. DOI: 10.1016/j.watres.2012.09.058
Rice, W. and Hirschfelder, J. (1954). Second virial coefficients of gases obeying a modified Buckingham (exp—six) potential. J. Chem. Phys., 22(2), 187-92. DOI: 10.1063/1.1740027
Rizzuto, C., Pugliese, G., Bahattab, M., Aljlil, S., Drioli, E. and Tocci, E. (2018). Multiwalled carbon nanotube membranes for water purification. Separat. Purif. Technol., 193, 378-85. DOI: 10.1016/j.seppur.2017.10.025
Roy, K., Mukherjee, A., Maddela, N. R., Chakraborty, S., Shen, B., Li, M., Du, D., Peng, Y., Lu, F. and Cruzatty, L. C. G. (2020). Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment—a review. J. Environ. Chem. Eng., 8(1), 103572. DOI: 10.1016/j.jece.2019.103572
Sahebi, M. and Azimian, A. R. (2015). Effect of some geometrical characteristics of asymmetric nanochannels on acceleration-driven flow. Microfluid. Nanofluid., 18(5), 1155-1163. DOI: 10.1007/s10404-014-1508-6
Sam, A., Prasad, V. and Sathian, S.P. (2019). Water flow in carbon nanotubes: the role of tube chirality. Phys. Chem. Chem. Phys., 21(12), 6566-6573. DOI: 10.1039/C9CP00429G
Sobhanardakani, S., Maànijou, M. and Asadi, H. (2015). Investigation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain. J. Hamadan Univ. Med. Sci.; 21(4), 319-29 [In Persian].
Tao, J., Song, X., Zhao, T., Zhao, S. and Liu, H. (2018). Confinement effect on water transport in CNT membranes. Chem. Eng. Sci., 192, 1252-1259. DOI: 10.1016/j.ces.2018.05.018
Yang, Y., Dementyev, P., Biere, N., Emmrich, D., Stohmann, P., Korzetz, R., Zhang, X., Beyer, A., Koch, S., Anselmetti, D. and Gölzhäuser, A. (2018). Rapid water permeation through carbon nanomembranes with sub-nanometer channels. ACS Nano, 12(5), 4695-4701. DOI: 10.1021/acsnano.8b01266
Zhang, X., Wei, M., Xu, F. and Wang, Y. (2020). Pressure-dependent ion rejection in nanopores. J. Phys. Chem. C, 124(37), 20498-20505. DOI: 10.1021/acs.jpcc.0c03641