Document Type : Research Paper

Authors

1 Ph.D. Scholar, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

2 Assoc. Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

3 Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

4 Assist. Professor, Department of Chemical Engineering, College of Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran

Abstract

Nowadays, discharge of toxic heavy metals through industrial, domestic, and agricultural effluents into the environment, in this study, the efficiency of thin-layer nanocomposite (TFN) nanofiltration membranes made using surface polymerization in combination with modified cellulose nanoparticles (mNC) was assessed for the removal of lead and chromium ions from aqueous solutions. In so doing, after modification of MNCSNCs, fabrication of membrane substrate and also PA selective layer, and then testing the performance of the membrane, the physical properties of the modified nanoparticles and nanocomposite membranes were also investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and zeta potential. Based on the Results obtained, the water flux of TFN2 membranes increased from 42 to 125 l/m2/h. Also, at pH = 8.5, the removal rate of Pb(II) and Cr(III) was 93% and 100%, respectively. Moreover, under these conditions, the adsorption process followed the Langmuir adsorption isotherm and the pseudo-second-order kinetic models. In general, the results showed that the synthesized nanofiltration nanocomposite membrane by embedding modified cellulose nanocrystals can be used to effectively remove Pb(II) and Cr(III) ions from aqueous solutions.

Keywords

Main Subjects

Akar Sh., Lorestani B. Sobhanardakani S. Cheraghi M. and Moradi O. (2019). Surveying the efficiency of Plantanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample. Environ. Monit. Assess., 191(6), 373. doi.org/10.1007/s10661-019-7479-z.
Aroua M. K., Zuki F. M. and Sulaiman N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J. Hazard. Mater., 147(3), 752-758. doi.org/10.1016/j.jhazmat.2007.01.120.
Azizian S. (2004). Kinetic models of sorption: A theoretical analysis. J. Colloid Interf. Sci., 276(1), 47-52. doi.org/10.1016/j.jcis.2004.03.048.
Bai L., Liu Y. Bossa N. Ding A. Ren N. Li G. Liang H. and Wiesner M. R. (2018). Incorporation of cellulose nanocrystals (CNCs) into the polyamide layer of thin-film composite (TFC) nanofiltration membranes for enhanced separation performance and antifouling properties. Environ. Sci. Technol., 52(19), 11178-11187. doi.org/10.1021/acs.est.8b04102.
Barakat M. A. and Schmidt E. (2010). Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination, 256(1), 90-93. doi.org/10.1016/j.desal.2010.02.008.
Cañizares P., Pérez Á. and Camarillo R. (2002). Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: calculation of design parameters. Desalination, 144(1-3), 279-285. doi.org/10.1016/S0011-9164(02)00328-4.
Esposito A., Pagnanelli F. Lodi A. Solisio C. and Veglio F. (2001). Biosorption of heavy metals by sphaerotilus natans: An equilibrium study at different pH and biomass concentrations. Hydrometallurgy, 60(2), 129-141. doi.org/10.1016/S0304-386X(00)00195-X.
Farokhi K., Cheraghi M. Sobhan Ardakani S. Lorestani B. and Emadzadeh D. (2021). Incorporation of modified cellulose nanocrystals to polyamide nanofiltration membrane for efficient removal of Cr(III) and Pb(II) ions from aqueous solutions. Int. J. Environ. Anal. Chem., 1-14. doi: 10.1080/03067319.2021.1879799.
Freundlich H. and Heller W. (1939). The adsorption of cis-and trans-azobenzene. J. Am. Chem. Soc., 61(8), 2228-2230. doi.org/10.1021/ja01877a071.
Guo X., Du B. Wei Q. Yang J. Hu L. Yan L. and Xu W. (2014). Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. J. Hazard. Mater., 278, 211-220. doi.org/10.1016/j.jhazmat.2014.05.075.
Hasanpour M. and Hatami M. (2020). Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interf. Sci., 284, 102247. doi.org/10.1016/j.cis.2020.102247.
Jiang X., Su S. Rao J. Li S. Lei T. Bai H. Wang S. and Yang X. (2021). Magnetic metal-organic framework (Fe3O4@ZIF-8) core-shell composite for the efficient removal of Pb(II) and Cu(II) from water. J. Environ. Chem. Eng., 9(5), 105959. doi.org/10.1016/j.jece.2021.105959.
Langmuir I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40(9), 1361-1403. doi.org/10.1021/ja02242a004.
Petrov S. and Nenov V. (2004). Removal and recovery of copper from wastewater by a complexation-ultrafiltration process. Desalination, 162, 201-209. doi.org/10.1016/S0011-9164(04)00043-8.
Qu J., Meng Q. Lin X. Han W. Jiang Q. Wang L. Hu Q. Zhang L. and Zhang Y. (2021). Microwave-assisted synthesis of β-cyclodextrin functionalized celluloses for enhanced removal of Pb(II) from water: Adsorptive performance and mechanism exploration. Sci. Total Environ., 752, 141854. doi.org/10.1016/j.scitotenv.2020.141854.
Saber-Samandari S., Saber-Samandari S. Nezafati N. and Yahya K. (2014). Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/fe-hydroxyapatite nanocomposite beads. J. Environ. Manage., 146, 481-490. doi.org/10.1016/j.jenvman.2014.08.010.
Saha S. and Sarkar P. (2012). Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. J. Hazard. Mater., 227, 68-78. doi.org/10.1016/j.jhazmat.2012.05.001.
Sobhanardakani S., Ahmadi M. and Zandipak R. (2016). Efficient removal of Cu(II) and Pb(II) heavy metal ions from water samples using 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles. J. Water Suppl. Res. Technol.—AQUA, 65(4), 361-372. doi.org/10.2166/aqua.2016.100.
Sobhanardakani S. (2017). Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon. Mar. Pollut. Bull., 123(1-2), 34-38. doi.org/10.1016/j.marpolbul.2017.09.033.
Sobhanardakani S. and Zandipak R. (2017). Synthesis and application of tio2/sio2/fe3o4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technol. Environ. Policy, 19(7), 1913-1925. doi.org/10.1007/s10098-017-1374-5.
Sobhanardakani S., Taghavi L. Shahmoradi B. and Jahangard A. (2017). Groundwater quality assessment using the water quality Pollution indices in Toyserkan Plain. Environ. Health Eng. Manage. J., 4(1), 21-27.
Talebzadeh F., Zandipak R. and Sobhanardakani S. (2016). CeO2 nanoparticles supported on CuFe2O4 nanofibers as novel adsorbent for removal of Pb(II), Ni(II), and V(V) ions from petrochemical wastewater. Desalin. Water Treat., 57(58), 28363-28377. doi.org/10.1080/19443994.2016.1188733.
Temkin M. and Pyzhev V. (1940). Recent modifications to langmuir isotherms. Acta Physiochim URSS, 12, 217-225.
Usman M., Ahmed A. Ji Z. Yu B. Shen Y. and Cong H. (2021). Environmentally friendly fabrication of new β-cyclodextrin/ZrO2 nanocomposite for simultaneous removal of Pb(II) and BPA from water. Sci. Total Environ., 784, 147207. doi.org/10.1016/j.scitotenv.2021.147207.
Verbych S., Bryk M. and Alpatova A. (2005). Chornokur G. Ground water treatment by enhanced ultrafiltration. Desalination, 179(1-3), 237-244. doi.org/10.1016/j.desal.2004.11.070.
Wang Z., Li T.-T. Peng H.-K. Ren H.-T. Lou C.-W. and Lin J.-H. (2021). Low-cost hydrogel adsorbent enhanced by trihydroxy melamine and β-cyclodextrin for the removal of Pb(II) and Ni(II) in water. J. Hazard. Mater., 411, 125029. doi.org/10.1016/j.jhazmat.2020.125029.
Xue F., He H. Zhou H. Quan Z. Chen Z. Wu Q. Zhu H. and Wang S. (2021). Structural design of a cellulose-based hyperbranched adsorbent for the rapid and complete removal of Cr(VI) from water. Chem. Eng. J., 417, 128037. doi.org/10.1016/j.cej.2020.128037.
Zandipak R., Sobhan Ardakani S. and Shirzadi A. (2020). Synthesis and application of nanocomposite Fe3O4@SiO2@CTAB–SiO2 as a novel adsorbent for removal of cyclophosphamide from water samples. Separ. Sci. Technol., 55(3), 456-470. doi.org/10.1080/01496395.2019.1566262.
Zandipak R. and Sobhanardakani S. (2018). Novel mesoporous Fe3O4@SiO2@CTAB–SiO2 as an effective adsorbent for the removal of amoxicillin and tetracycline from water. Clean Technol. Environ. Policy, 20(4), 871-885. doi.org/10.1007/s10098-018-1507-5.
Zhang D., Karkooti A. Liu L. Sadrzadeh M. Thundat T. Liu Y. and Narain R. (2018). Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes. J. Membr. Sci., 549, 350-356. doi.org/10.1016/j.memsci.2017.12.034.
Zhou Y.-T., Nie H.-L. Branford-White C. He Z.-Y. and Zhu L.-M. (2009). Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J. Colloid Interf. Sci., 330(1), 29-37. doi.org/10.1016/j.jcis.2008.10.026.