نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی،دکتری، گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 استادیار، گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 استادیار، گروه کشاورزی و منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، واحد فیروزآباد، دانشگاه آزاد اسلامی، فیروزآباد، ایران

چکیده

استفاده از فرآیندهای طبیعی ازجمله پتانسیل فیزیولوژیکی گیاهان راه­حلی مناسب برای رفع آلودگی فلزات سنگین است. در این پژوهش به‌منظور بررسی تأثیر شیرابه زباله و فاضلاب صنعتی بر میزان جذب فلزات سنگین از آب‌های نامتعارف به­وسیله گیاه وتیور، تعداد دو آزمایش جداگانه در سال زراعی 1400-1399 به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی اجرا شد. متغییرهای آزمایش شامل کاربرد شیرابه زباله و فاضلاب صنعتی در سطوح (0، 25، 50، 75، و100%) هرکدام در سه تکرار (B1، B2، و B3) با دو سطح دور آبیاری 5 و day 10 (A5 و A10) اجرا شد. نتایج آزمایش نشان داد، آبیاری با آب‌های نامتعارف شیرابه زباله­های شهری، تأثیر معنی­داری بر میزان آهن، روی، مس، منگنز، پتاسیم، سدیم جذب‌شده توسط وتیور در سطح 5% داشت (P<0.05). کاربرد فاضلاب صنعتی تأثیر معنی­داری بر میزان آهن، روی، مس، منگنز، سدیم جذب‌شده توسط وتیور در سطح 5% داشت (P<0.05) اما تأثیر معنی­داری بر میزان پتاسیم نداشت (P>0.05). تیمارهای R4A1 و W5A1 با کاهش تولید زیست توده زیر 10 درصد نسبت به شاهد، بازخورد نسبتا خوبی از خود نشان داد.  با توجه به نتایج به‌دست‌آمده، گونه وتیور دارای سازگاری نسبتاً بالایی در جذب فلزات سنگین با آب‌های نامتعارف داشت. این گیاه در راستای حفاظت آب‌وخاک می­تواند کاربرد ویژه­ای داشته باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Phytoremediation of Heavy Metals by Vetiver Plant Species in Unconventional Water

نویسندگان [English]

  • Sadroddin Abdollahi Mansurkhani 1
  • Mehdi Asadilour 2
  • Ali Farzadian 3
  • Aslan Egdernezhad 2
  • Ali Asareh 2

1 Ph.D. Scholar, Department of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 Assist. Professor of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

3 Assist. Professor, Department of Agriculture and Natural Resources, Faculty of Agriculture and Natural Resources, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran

چکیده [English]

The use of natural processes, including the physiological potential of plants, is a suitable solution. In this study in order to assess the effect of waste leachate and industrial wastewater on the absorption of heavy metals by the Vetiver plant, two separate factorial experiments were performed in the crop year 2020-2021 as a completely randomized design. Experiment treatments factors included waste leachate and industrial wastewater use separately on 5 levels (0, 25, 50, 75, and 100%) in three replications (B1, B2, B3) and two irrigation periods of 5 and 10 days (A5, A10). The amount of iron, zinc, copper, manganese, potassium, and sodium measured in vetiver showed waste leachate had a significant effect at the level of 5% (P <0.05). Meanwhile, the use of industrial wastewater had a significant effect on the amount of iron, zinc, copper, manganese, and sodium absorbed by the vetiver at the level of 5% (P <0.05) but it had no significant effect on the potassium amount (P> 0.05). R4A1 and W5A1 treatments showed a relatively good response with a decrease in biomass production below 10% compared to the control treatment. According to the results, the Vetiver species has relatively high compatibility in the absorption of heavy metals with unconventional waters and can have a special application for soil and water protection.

کلیدواژه‌ها [English]

  • Heavy Metals
  • Industrial Wastewater
  • Vetiveria Zizonicides
  • Waste Leachate
  • Randomized Complete Design
Abdzad, G. A., Amiri, E., Babazadeh, H. and Sedghi, H. (2018). Effect of salinity and irrigation on yield and water use efficiency of peanut varieties. Iran. J. Soil Water Res., 49(2), 329-340. DOI:10.22059/ijswr.2017.230766.667656 [In Persian].
Akbari, M. and Farhadi, A. (2021). Effect of Irrigation Methods and Plastic Mulches on Water Productivity of Melon. Water Irrig. Manage., 11(1), 45-58 DOI:10.22059/jwim.2021.311742.833 [In Persian]. 
Akbarzadeh, A., Vakhshouri, M., Jamshidi, S. and Khalesidoost, M. (2015). Evaluation of the Performance of Vetiveria zizanioides in Removing Nutrients from Wastewater. J. Water Wastewater, 26(1), 57-67 [In Persian]. 
Asadi, S. and Jalali, V. (2021).  Phytoremediation and estimation of optimal clean up time of lead contaminated soils using Portulaca oleracea L. Environ. Water Eng., 7(1), 25-37. DOI: 10.22034/jewe.2020.248656.1424
Boonsong, K. and Chansiri, M. (2008). Domestic wastewater treatment using vetiver grass cultivated with floating platform technique. AU J. Technol., 12(2), 73-80.
Darajeh, N., Truong, P., Rezania, S., Alizadeh, H. and Leung, D. W. M. (2019). Effectiveness of Vetiver grass versus other plants for phytoremediation of contaminated water. J. Environ. Treat. Tech., 7(3), 485-500.
Dotaniya, M. L., Dotaniya, C. K., Solanki, P., Meena, V. D. and Doutaniya, R. K. (2020). Lead contamination and its dynamics in soil–plant system. In lead in plants and the environment (pp. 83-98). Springer, Cham. DOI:10.1007/978-3-030-21638-2_5
Dudai, N., Putievsky, E., Chaimovitch, D. and Ben-Hur, M. (2006). Growth management of vetiver (Vetiveria zizanioides) under Mediterranean conditions. J. Environ. Manage., 81, 63-71. DOI: 10.1016/j.jenvman.2005.10.014
Effendi, H., Widyatmoko, Utomo., B. A. and Pratiwi, N. T. M. (2020). Ammonia and orthophosphate removal of tilapia cultivation wastewater with vetiveria zazanioides. J. King Saud. Univ. Sci., 32(1), 207- 212. DOI: 10.1016/j. jksus. 2018. 04. 018
Gravand, F., Rahnavard, A. and Mohammad Pour, G. (2021). Investigation of the uptake of heavy metals in waste leachate by vetiver from a contaminated soil. Sci. J. Soil Res., 35(1), 89-104 DOI: 10.22092/ijsr.2021.352671.569 [In Persian].
Ghaemi, A. and Majdoddin, F. (2017). Investigation of vetiver and eucalyptus phytoremediation in absorption of some heavy metals from wastewater in soil contaminated with waste leachate. Water Resour. Eng. J., 9(28), 95-106 DOI: 20.1001.1.20086377.1395.9.28.8.9 [In Persian].
Hesham, R. and Rashed, I. G. (2002). A method for treating wastewater containing formaldehyde. Water Res. 36(3), 633-637. DOI: 10.1016/S0043-1354(01)00255-X
Kafil, M., Boroomand Nasab, S., Moazed, H. and Bhatnagar, A. (2019). Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil. Int. J. Phytoremed., 21(2), 92-100. DOI: 10.1080/15226514.2018.1474443
Mohebbi Najmabadi, E., Fotovat, A. and Halajnia, A. (2019). Effect of citric acid, nitrilotriacetic acid and anion polyacrylamide on phytoremediation of nickel by maize and sunflower. Iran. J. Soil Water Res., 50(4), 933-921. DOI: 10.22059/ijswr.2018.254627.667878. [In Persian]. 
Mu, J., Hu, Z., Huang, L., Tang, S. and Holm, P. E. (2019). Influence of alkaline silicon-based amendment and incorporated with biochar on the growth and heavy metal translocation and accumulation of vetiver grass (Vetiveria zizanioides) grown in multi-metal-contaminated soils. J. Soil. Sediment., 19(5), 2277-2289. DOI: 10.1007/s11368-018-2219-5
Ng, C. C., Boyce, A. N., Abas, M. R., Mahmood, N. Z. and Han, F. (2020). Evaluation of vetiver grass uptake efficiency in single and mixed heavy metal contaminated soil. Environ. Process., 1-20. DOI: 10.1007/s40710-019-00418-2.
Otieno, A., Karuku, G., Raude, J. and Koech, O. (2018). Accumulation of nitrogen and phosphorous by vetiver grass (Chrysopogon Zizanioides) in a model constructed wetland treatment system for polishing municipal wastewater. Int. J. Innov. Appl. Stud. Victoria, 22(4), 291-298.
Panja, S., Sarkar, D. and Datta, R. (2020). Removal of tetracycline and ciprofloxacin from wastewater by vetiver grass (Chrysopogon zizanioides (L.) Roberty) as a function of nutrient concentrations. Environ. Sci. Pollut. Res., 27(28), 34951-34965. DOI: 10.1007/S11356-020-09762-5
Pentyala, V. B. and Eapen, S. (2020). High efficiency phytoextraction of uranium using Vetiveria zizanioides L. Nash. Int. J. Phytoremed., 22(11). 1137-1146. DOI: 10.1080/15226514.2020.1741506
Rahmanian, M. and Safari, Y. (2020). Mapping cadmium and nickel contamination in soils around Yasouj cement factory. Environ.  Water Eng., 6(4), 321-330. DOI: 10.22034/jewe.2020.232526.1365. [In Persian].
Raj, D. and Maiti, S. K. (2020). Sources, bioaccumulation, health risks and remediation of potentially toxic metal (loid) s (As, Cd, Cr, Pb and Hg): an epitomized review. Environ. Monit. Assess.,  192(2), 1-20. DOI: 10.1007/s10661-019-8060-5.
Shahid, S., Zahoor, S., and Fatima, U. (2018). Review of pharmacological activities of Vetiveria zizanoide (Linn) Nash. J. Basic Appl. Sci., 14, 235-238. DOI: 10.6000/1927-5129.2018.14.36.
Sharma, R., Agrawal, M. and F. Marshall. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Safety. 66, 258–266. DOI: 10.1016/j.ecoenv.2005.11.007
Tambunan, J. A. M., Effendi, H.and Krisanti, M. (2018). Phytomerediating batik wastewater using vetiver chryspogon zizanioides (L). Polish J. Environ. Stud., 27(3),1281-1288. DOI: 10.1007/s13201-018-0640-y.
Truong, P. N. V. (2008). Research and development of Vetiver grass for treatment of polluted water and contaminated land. Proc. 1st Indian National Vetiver Workshop, Cochi, Kerala, India. DOI: 10.5772/intechopen.69303
Tsao, D. T. (2003). Overview of phytotechnologies. Adv. Biochem. Eng. Biotechnol., 78, 1–50. DOI: 10.1007/3-540-45991-X_1.