نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، موسسه آموزش و ترویج کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 استادیار، پژوهشکده حفاظت خاک و آبخیزداری کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

وقایع حدی اقلیمی با تغییرات اقلیمی ارتباط دارد. شناخت تغییرات این وقایع در برنامه­ریزی برای کاهش اثرات آن مهم و ضروری است. در این تحقیق با استفاده از داده­های دمای روزانه 8 ایستگاه سینوپتیک در ناحیه شمال و غرب کشور، 18 شاخص حدی دمایی تعریف شده توسط ETCCDI  مورد ارزیابی قرار گرفت. نتایج نشان داد شاخص شدت دما در شب (TNn,TNx) نسبت به شاخص شدت دما در روز (TXn,TXx) دارای روند بیش­تری است. فراوانی شاخص­ شب­های گرم (TN90p) و روزهای گرم (TX90p) در غالب ایستگاه­های مورد مطالعه از روند افزایشی معنی­داری برخوردار بودند. همچنین شاخص شب های سرد (TN10p) در ناحیه شمال و غرب کشور روند منفی و معنی­داری داشت و در شمال کشور روند بیش­تر را نسبت به غرب نشان داد. شاخص روزهای سرد (TX10p) برای هر دو ناحیه مورد مطالعه منفی بود. شاخص های حدی سرد شامل تعداد روزهای یخی (ID)، تعداد روزهای یخبندان (FD) و طول مدت سرما (CSDI) در هر دو ناحیه کشور روند منفی را نشان دادند. در حالی­که شاخص­های گرم تعداد روزهای تابستانی (SU)، شب­های حاره­ای (TR20) و طول مدت گرما (WSDI) دارای روند مثبت و معنی­داری بودند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of Spatial and Temporal Variability of Extreme Temperature by ETCCDI Indices (North and West of Iran)

نویسندگان [English]

  • Mojtaba Nassaji Zavareh 1
  • Bagher Ghermezcheshmeh 2

1 Assist. Professor, Institute of Agricultural Education & Extension, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

2 Assist. Professor, Soil Conservation and Watershed Management Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

چکیده [English]

Extreme climatic events are associated with climate changes. Understanding the diversifications in these events is important in planning to reduce their effects. In this research, using daily temperature data of 8 synoptic stations in the north and west of the country, 18 extreme temperature indices as defined by the Expert Team on Climate Change Detection Indices (ETCCDI) were evaluated. The results showed that the temperature intensity indices at night had a higher trend than the temperature intensity indices during the day. The frequency of the hot night index and hot day index in most of the studied stations had a significant increasing trend. Moreover, the cool night frequency index had a negative and significant trend in the north and west of the country and showed a higher trend in the north of the country than in the west. The cool day frequency index was negative for both study areas. Cold extreme indices including the number of cold days, number of frost days, and cold spell duration index were obtained in both regions of the country with a negative trend. While warm indices showed the number of hot days, warm nights, and warm spell duration index with a positive and significant trend.

کلیدواژه‌ها [English]

  • Climate Change
  • Daily Temperature
  • Extreme Temperature Indices
  • Trend
Bonsal, B. R., Zhang, X., Vincent, L. A. and Hogg, W. D. (2001). Characteristics of daily and extreme temperature over Canada. J. Climate, 14(9), 1959-1976. DOI: 10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2.
Choi, G., Collins, D., Ren, G., Trewin, B., Baldi, M., Fukuda, Y., Afzaal, M., Pianmana, T., Gomboluudev, P., Huong, P. T. T., Lias, N., Kwon, W. T., Boo, K., Cha, Y. and Zhouc, Y. (2009). Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Climatol., 29(13), 1906–1925. DOI: 10.1002/joc.1979.
Degaetano, A. T. (1996). Recent trends in maximum and minimum temperature threshold exceedences in Northern United States. J. climate, 9(7), 1646-1657. DOI: 10.1175/1520-0442(1996)009<1646:RTIMAM>2.0.CO;2.
Donat, M. G., Alexander, L. V., Yang, H., Durre I., Vose, R. and Caesar, J. (2013). Global land-based datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc., 94, 997-1006. DOI: 10.1175/BAMS-D-12-00109.1.
Easterling, D. R. (2003). Recent changes in frost days and the frost-free season in the United States, Bull. Amer. Meteorol. Soc., 83(9), 1327-1332. DOI: 10.1175/1520-0477-83.9.1327.
Fatehi, Z. and Shahoei, S. V. (2021). Predicting the impact of climate change on temperature in Sanandaj City. J. Environ. Water Eng., 7(1), 170 – 182. DOI: 10.22034/JEWE.2020.239070.1386. [in Persian].
Frich, P., Alexander, L. V., Della-Marta. P., Gleason, B., Haylock, M., Klein Tank, A. M. G. and Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climat. Res., 19, 193–212. DOI: 10.3354/cr019193.
García-Cueto, O. R., Cavazos, M. T., De Grau, P. and Santillán-Soto, N. (2014). Analysis and modeling of extreme temperatures in several cities in northwestern Mexico under climate change conditions. Theor. Appl. Climatol., 116 (1-2), 211–225. DOI: 10.1007/s00704-013-0933-x.
Hann Charles, T. (2002). Statistical Methods in Hydrology.Iowa State Press, A Blackwell Publishing Company.
IPCC. (2007). Climate Change 2007: The Physical Science Basis, A Contribution of Working Groups. I to the forth assessment report of the intergovernmental panel on climate change, Solomon and the Core Writing Team (eds). Cambridge University press, Cambridge United Kingdom and New York, USA.
IPCC. (2013). Climate Change 2013: The physical science basis. Contribution of Working Group, I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge and New York, NY: Cambridge University Press, 1535 pp.
New, M., Hewitson, H., Stephenson, D. B., Tsiga, A., Kruger, A., Manhique, A., Gomez, B., Coelho, C.  A. S., Masisi, D. N., Kululanga, E., Mbambalala, E., Adesina, F., Saleh, H., Kanyanga, J., Adosi, J., Bulane, L., Fortunata, L., Mdoka, M. L. and Lajoie, R. (2006). Evidence of trends in daily climate extremes over southern and west Africa. J. Geo. Res., 111(D1), 1-11. DOI: 10.1029/2005JD006289.
Peterson, T., Easterling, D., Karl, T., Groisman, P., Plummer, N., Nicholls, N., Torok, S., Auer, I., Boehm, R., Gullet, D., Vincent, L., Heino, R., Tuomenvirta, H., Mestre, O., Szentimrey, T., Salinger, J., Førland, E., Hanssen-Bauer, I., Alexandersson, H., Jones, P. and Parker, D. (1998). Homogeneity adjustments of in situ atmospheric climate data: a review. Int. J. Climatol., 18(13), 1493–1517. DOI: 10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T.
Plummer, N., Salinger, M. J., Nicholls. N., Suppiah. R., Hennessy. K. J., Leighton, R. M., Trewin, B. C., Page, C. M. and Lough, J. M. (1999). Changes in climate extremes over the Australian region and New Zeland during the twentieth century. Clim. Change, 42(1), 183-202. DOI: 10.1023/A:1005472418209.
Rahimzadeh, F. and Nassaji Zavareh, M. (2014). Effects of adjustment for non‐climatic discontinuities on determination of temperature trends and variability over Iran. Int. J. Climatol., 34(6), 2079-2096.  DOI: 10.1002/joc.3823.
Rahimzadeh, F., Asgari, A. and Fattahi, E. (2009). Variability of extreme temperature and precipitation in Iran during recent decades. Int. J. Climatol., 29(3), 329-343. DOI:  10.1002/joc.1739.
Salimi Fard, M., Sanaei Nejad, Salimi Fard, M., Sanaei Nejad, H., Jabari Noghabi, M. and Sabet Dizavandi. L. (2017). Detecting the effect of climate change on extreme temperature events in Khorasan Razavi province Case study: 1990-2015. J. Clim. Res., 8(31-32), 111-124 [in Persian].  
 Skansi, M. D. L. M., Brunet, M.,  Sigró, J.,  Aguilar, E. Groening, J. A. A.,  Bentancur., O. J., Geier, Y. R. C.,   Amaya, R. L. C., Jácome, H.,  Ramos., A. M.,  Rojas, C. O.,  Pasten, A. M., Mitro, S. S.,  Jiménez, C. V.,  Martínez, R., Alexander, L. V. and Jones, P. D.(2013). Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob. Planet. Change, 100, 295-307. DOI: 10.1016/j.gloplacha.2012.11.004.
Stephenson, S. T., Vincent, L. A., Allen, T., Van Meerbeeck, C. J., McLean, N., Peterson, T. C., Taylor, M. A. Aaron-Morrison, A. P., Auguste, T., Bernard, D., Boekhoudt, J. R. I., Blenman, R. C., Braithwaite, G. C., Brown, G., Butler, M., Cumberbatch, C. J. M., Etienne-Leblanc, S., Lake, D. E., Martin, D. E., McDonald., J. L., Zaruela, M. O., Porter, A. O., Ramire, M. S., Tamar, G. A., Roberts, B. A., Mitro, S. S., Shaw, A., Spence, J. M., Winter A. and Trotman, A. R. (2014). Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int. J. Climatol., 34(9), 2957–2971. DOI: 10.1002/joc.3889.
 Tebaldi, C., Hayhoe, K., Arblaster, J. M. and Meehl, G. A. (2006). Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Climatic Change. 79(3-4). 185–211. DOI: 10.1007/s10584-006-9051-4.
Varshavian, Kh., Ghahreman, N. and Hajjam, S. (2011). Trend analysis of minimum, maximum, and mean daily temperature extremes in several climatic regions of Iran. J. Earth Space Phys., 37 (1), 169-179 [in Persian].
Wang, X.,  Li, Y.,  Wang, M.,  Li, Y.,  Gong, X., Chen, Y., Chen, Y. and  Cao. W. (2021). Changes in daily extreme temperature and precipitation events in mainland China from 1960 to 2016 under global warming Int. J. Climatol., 41(2), 1465-1483. DOI:  10.1002/joc.6865.
Whan, K., Alexander, L. V., Imielska, A., McGree, S., Jones, D., Ene, E., Finaulahi, S., Inape, K., Jacklick, L., Kumar, R., Laurent, V., Malala, H., Malsale, P., Pulehetoa-Mitiepo, R., Ngemaes, M., Peltier, A., Porteous, A., Seuseu, S., Skilling, E., Tahani, L., Toorua, U. and Vaiimenet, M. (2014). Trends and variability of temperature extremes in the tropical Western Pacific. Int. J. Climatol., 34(8), 2585–2603. DOI: 10.1002/joc.3861.
 Yin, H. and Sun, Y. (2018). Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices. Advances in Climate Change Research, 9 (4), 218-226. DOI: 10.1016/j.accre.2019.01.001
Zhai, P., Sun, A., Ren, F., Liu, X., Gao, B. and Zhang, Q. (1999). Changes of climate extremes in China. Clim. Change, 42(1), 203-218. DOI: 10.1023/A:1005428602279.