نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناس ارشد، گروه مهندسی الیاف، دانشکده مهندسی نساجی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 استادیار، گروه مهندسی الیاف، دانشکده مهندسی نساجی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در سال‌های اخیر، معرفی فرآیند موثر برای بازیافت ته سیگارهای استفاده‌شده به‌عنوان یک چالش اصلی برای کاهش آلودگی محیط‌زیست در کل جهان مطرح است؛ بنابراین بدین منظور الیاف کربن فعال (ACFs) به‌وسیله فرآیند پیرولیز/ فعال­سازی با استفاده از عامل فعال­ساز شیمیایی پتاسیم هیدروکسید (KOH) از ته سیگار تولید شدند. فیلترهای عمل شده با KOH در یک کوره تیوپی با نرخ­های گرمایش مختلف و نگه­داری به مدت یک ساعت در دمای °C800 تحت محیط نیتروژن قرار گرفتند. تأثیرات روش­های مختلف تولید بر روی ساختار سطحی، ریزساختار و تخلخل ACFs موردمطالعه قرار گرفتند. ساختار سطحی و تحلیل ریزساختار ACFs نشان دادند که مناطق متخلخل و گروه­های حاوی اکسیژن (COOH، -OH و C=O) بر روی سطح نمونه­ها شکل‌گرفته‌اند. با توجه به نتایج به‌دست‌آمده، نمونه­های ACFs تولیدشده دارای ساختار متخلخل با حفظ شکل الیاف است. نمونه­ ACFs با بالاترین مقدار بازده کربنی، سطح مخصوص و حجم کل مناطق متخلخل به ترتیب در 41/29%، m2/g 855 و cm3/g 7431/0 با غلظت g/l10 KOH، نرخ گرمایش °C/min2 و دمای کربنیزاسیون °C800 به‌دست‌آمده است. این مطالعه یک فرآیند مهندسی موفق برای بازیافت ته سیگار به‌وسیله تبدیل آن­ها به ساختارهای ACFs با استفاده از فرآیند فعال­سازی شیمیایی جهت کاربرد جذب مواد نفتی ارائه‌شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Structural Engineering of Activated Carbon Fibers Derived from Cigarette Butts for Fast Oily Materials Adsorption

نویسندگان [English]

  • Zahra Ranjkesh 1
  • Fatemeh sadat Mousavi 1
  • Komeil Nasouri 2

1 M.Sc. Student, Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran

2 Assist. Professor, Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran

چکیده [English]

In recent years, an effective recycling process from smoked cigarette butts is the main challenge for decreasing the worldwide environmental pollution. Therefore, low-cost activated carbon fibers (ACFs) are synthesized by a carbonization/ activation process derived from smoked cigarette filters, in which potassium hydroxide (KOH) acts as the chemical activation agent. The KOH-treated filters were added to a tube oven and heated at various rates and held at 800 °C for 1 h under a nitrogen atmosphere. The effects of various synthesis procedures on surface morphology, microstructure, and porosity of the synthesized ACFs were investigated. The surface morphology and microstructural analysis of ACFs displayed that the porous spots and oxygen-containing groups (COOH, –OH, and C=O) are formed on the surfaces of fibers. The obtained results displayed that the synthesized ACFs have developed porous structures with fibrous shapes. The ACFs with maximum carbon yield, surface area, and total pore volume of 29.41 %, 855 m2/g, and 0.7431 cm3/g were synthesized at a KOH concentration of 10 g/l, a heating rate of 2 °C/min, and carbonization temperature of 800 °C. This study presented an engineering process for the production of ACFs through recycling smoked cigarette butts with chemical activation protocol.

کلیدواژه‌ها [English]

  • Carbonization
  • Cigarette butts
  • Oil adsorption
  • Recycling
Aeslina, A. and Mohajerani, A. (2012). Leachability of heavy metals from fired clay bricks incorporated with cigarette butts. Eng. Indus. Appl., 1, 872–877.  DOI:  10.1109/ISBEIA.2012.6423017
Ahuja, D., Dhiman, S., Rattan, G., Monga, S., Singhal, S. and Kaushik, A. (2021). Superhydrophobic modification of cellulose sponge fabricated from discarded jute bags for oil water separation. J. Env. Chem. Eng., 9, 105063. DOI:   10.1016/j.jece.2021.105063
Arianpour, F., Golestanifard, F. and Rezaie, H. R. (2016). Spark plasma sintering of ultra-high temperature tantalum/ hafnium carbides composite. Adv. Ceram. Prog., 2, 13-18. DOI:  10.30501/acp.2016.70013
Cui, Y., Wu, Z., Li, Y. and Yang, H. (2018). Experimental study on determining the optimum cigarette butt content of modified bituminous mixture of cigarette butts. J. Civil Eng. Archit., 12, 447–453. DOI:   10.17265/1934-7359/2018.06.005
Green, A.L.R., Putschew, A. and Nehls, T. (2014). Littered cigarette butts as a source of nicotine in urban waters. J. Hydrol., 519, 3466–3474.  DOI:  10.1016/j.jhydrol.2014.05.046
Gupta, S. and Tai, N-H. (2016). Carbon materials as oil sorbents: a review on the synthesis and performance. J. Mater. Chem. A, 4, 1550–1565. DOI:   10.1039/C5TA08321D
Husseien, M., Amer, A., El-Maghraby, A. and Hamedallah, N. (2009). A comprehensive characterization of corn stalk and study of carbonized corn stalk in dye and gas oil sorption. J. Anal. Appl. Pyrol., 86, 360–363.
Kim, G.P., Lee, M., Song, H.D., Bae, S., Yi, J., 2016. Highly efficient supporting material derived fromused cigarette filter for oxygen reduction reaction. Catal. Commun., 78, 1–6. DOI:  10.1016/j.catcom.2016.01.030
Koseoglu, H., 2016. Biotemplated Luffa cylindrica for the oil spill clean-up from seawater. Desalin. Water Treat., 57, 25591–25599.  DOI:  10.1080/19443994.2016.1152513
Koushkbaghi, S., Jamshidifard, S., ZabihiSahebi, A., Abouchenari, A., Darabi, M., Irani, M., 2019. Synthesis of ethyl cellulose/aluminosilicate zeolite nanofibrous membranes for oil–water separation and oil absorption. Cellulose. 26, 9787–9801. DOI: 10.1007/s10570-019-02738-w
Lee, M., Kim, G.P., Song, H.D., Park, S., Yi, J., 2014. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnol., 25, 345601. DOI: 10.1088/0957-4484/25/34/345601
Li, Y-Q., Samad, Y.A., Polychronopoulou, K., Alhassan, S.M., Liao, K., 2014. Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain Chem. Eng. 2, 1492–1497. DOI:  10.1021/sc500161b
Lu, J., Li, W., Kang, H., Feng, L., Xu, J., Liu, R., 2020. Microstructure and properties of polyacrylonitrile based carbon fibers. Polym. Test., 81, 106267. DOI:  10.1016/j.polymertesting.2019.106267
Luo, Z., Li, D., Huang, L., Tan, S., Huang, J., 2020. Flexible and superhydrophobic aerogel based on an interpenetrating network of konjac glucomannan and reduced graphene oxide for efficient water–oil separation. J. Mater. Sci., 55, 12884–12896. DOI: 10.​1007/​s10853-020-04901-2
Marinello, S., Lolli, F., Gamberini, R., Rimini, B., 2020. A second life for cigarette butts? A review of recycling solutions. J. Hazard. Mater., 384, 1–20. DOI:   10.1016/j.jhazmat.2019.121245
Mi, H-Y., Li, H., Jing, X., Zhang, Q., Feng, P-Y., He, P., Liu, Y., 2020. Robust superhydrophobic fluorinated fibrous silica sponge with fire retardancy for selective oil absorption in harsh environment. Separ. Pur. Technol. 241, 116700.  DOI:  10.1016/j.seppur.2020.116700
Mirzaee, M., Dehghanian, Ch., 2020. Effect of different types of electrochemical methods on the super capacitor properties of thin graphene oxide reduced by electrochemical method. J. Adv. Mater. Tech., 9, 35-42. DOI:   10.30501/jamt.2020.185410.1031
Murugan, K., Suresh, U., Panneerselvam, C., Rajaganesh, R., Roni, M., Aziz, A.T., et al., 2018. Managing wastes as green resources: cigarette butt-synthesized pesticides arehighly toxic to malaria vectors with little impact on predatory copepods. Environ. Sci. Pollut., 25, 10456–10470. DOI:  10.1007/s11356-017-0074-3
Novotny, T.E., Zhao, F., 1999. Consumption and production waste: another externality of tobacco use. Tobac. Control, 8, 75–80. DOI: 10.1136/tc.8.1.75
Ogundare, S.A., Moodley, V., Zyl, W.E., 2017. Nanocrystalline cellulose isolated from discarded cigarette filters. Carbohyd. Polym., 175, 273–281. DOI:   10.1016/j.carbpol.2017.08.008
Rodenas, M.A.L., Amoros, D.C., Solano, A.L., 2003. Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism. Carbon, 41, 267–275. DOI:   10.1016/S0008-6223(02)00279-8
Sanz, R.M., Escobar, V.G., Rodríguez, J.M.M., 2018. Potential use of cigarette filters as sound porous absorber. Appl. Acous., 129, 86–91. DOI: 10.1016/j.apacoust.2017.07.011
Teixeira, M.B., Duarte, M.A.B., Garcez, L.R., Rubim, J.C., Gatti, T.H., Suarez, P.A.Z., 2017. Process development for cigarette butts recycling into cellulosepulp. Waste Manag., 60, 140–150. DOI: 10.1016/j.wasman.2016.10.013
Torkashvand, J., Farzadkia, M., Sobhi, H., Esrafili, A., 2020. Littered cigarette butt as a well known hazardous waste: A comprehensive systematic review. J. Hazard. Mater., 383, 1–12. DOI:  10.1016/j.jhazmat.2019.121242
Vahidhabanu, S., Rameshbabu, B., Babu, P.S., Rahman, H.A., 2014. Study of cigarette butts extract as corrosive inhibiting agent in J55 steel material. Inter. J. Res. Eng. Technol., 3, 444–452. DOI:  10.15623/ijret.2014.0301077
Veerabagu, U., Chen, Z., Xiang, J., Chen, Z., Liu, M., Xia, H., Lu, F., 2021. Novel cigarette butts-derived porous carbon-based catalyst for highly efficient Suzuki-Miyaura cross-coupling reaction. J. Env. Chem. Eng., 9, 1–10. DOI:  10.1016/j.jece.2021.105246
Wei, Q.F., Mather, R.R., Fotheringham, A.F., Yang, R.D., 2003. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Marin. Poll. Bull. 46, 780–783. DOI: 10.1080/09593330.2020.1714743
Xiong, Q., Bai, Q., Li, C., Lei, H., Liu, H., Shen, Y., Uyama, H., 2018. Cost-effective, highly and environmental friendly superhydrophobic adsorbent from cigarette filters for oil sillage cleanup. Polymers, 10, 1101-1117.  DOI:  10.3390/polym10101101
Xiong, Q., Bai, Q., Li, C., Li, D., Miao, X., Shen, Y., Uyama, H., 2019. Nitrogen-doped hierarchical porous carbons from used cigarette filters for supercapacitors. J. Taiwan Instit. Chem. Eng., 95, 315–323. DOI:   10.1016/j.jtice.2018.07.019
Zhao, J., Zhang, N., Qu, C., Wu, X., Zhang, J., Zhang, X., 2010. Cigarette butts and their application in corrosion inhibition for N80 steel at 90°C in a hydrochloric acid solution. Indus. Eng. Chem. Res., 49, 3986–3991. DOI:  10.1021/ie100168s
Zhang, X., Yu, M., Li, Y., Cheng, F., Liu, Y., Gao, M., et al., 2021. Effectiveness of discarded cigarette butts derived carbonaceous adsorbent for heavy metals removal from water. Microchem. J., 168, 1–8. DOI:  10.1016/j.microc.2021.106474