نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه محیط‌زیست، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه محیط زیست، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانشیار، مرکز تحقیقات بهداشت محیط، دانشگاه علوم پزشکی گلستان، گرگان، ایران

4 دانشیار، گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

فرآیندهای صنعتی و کشاورزی منجر به انتشار فلز کادمیم در بوم­سازگان شده است. یکی از روش‌های حذف فلزات سنگین استفاده از جذب سطحی است. هدف این پژوهش تعیین کارایی نانوگرافن مغناطیسی برای حذف یون‌ کادمیوم از محلول آبی بود. این پژوهش در یک سیستم ناپیوسته در مقیاس آزمایشگاهی انجام شد. بدین منظور اثر پارامترهای مؤثر نظیر  ، غلظت، زمان تماس ، دمای محیط، دوز جاذب و سایر عوامل بررسی شد. نتایج نشان داد حداکثر میزان جذب کادمیوم در شرایط 6 pH=، غلظت mg/l100، زمان تماس min 120، دمای محیط °C 45 و دوز جاذب g 01/0 رخ داده است. پارامترهای ترمودینامیکی نشان داد که فرآیند جذب فلز کادمیوم در محدوده دمایی 288 تا K 318 خود به­خودی و گرماگیر بوده است. داده‌‌های آزمایشگاهی نشان داد که مدل شبه مرتبه دوم با ثابت آهنگ جذب (0092/2 =. k) و ضریب تعیین (99/ 0 R2 = )،  فرایند جذب را بهتر توصیف می‌‌کند. بررسی ایزوترم­های جذب نشان داد ایزوترم فروندلیچ (96/0  R2) برای توصیف فرآیند جذب مناسب‌‌تر بوده و مطابقت بیش­تری با داده‌‌های آزمایشگاهی داشته است. با توجه به نتایج این پژوهش از جاذب نانوگرافن اکسید مغناطیسی با کارایی 8/92% می‌توان برای حذف کادمیوم از محلول‌‌های آبی می‌‌توان استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Removal of Cadmium Ion from Aqueous Solutions Using Magnetic Graphene Oxide Nanoparticles

نویسندگان [English]

  • Parya Fathollahi 1
  • Hassan Rezaei 2
  • Mahdi Sadeghi 3
  • Somayeh Namroodi 4

1 M.Sc. Alumni, Department of Environmental Sciences, Faculty of Fisheries and Environment, Gorgan University of Agricultural and Natural Sciences, Gorgan, Iran

2 Assoc. Professor, Department of Environmental Sciences, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Assoc. Professor, Department of Environmental Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran

4 Assoc. Professor, Department of Environmental Sciences, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

چکیده [English]

Industrial and agricultural processes have resulted in the release of cadmium metal into the ecosystem. One way to remove this heavy metal is adsorption. This research aimed to determine the efficiency of magnetic nanographene for removing cadmium ions from aqueous solution., This research was done in a discontinuous system at a laboratory scale. For this purpose, the effect of effective parameters such as pH, concentration, contact time, ambient temperature, adsorbent dose, and other factors was investigated. The results showed that the maximum amount of cadmium absorption occurred in the conditions of pH=6, concentration 100 mg/l, contact time 120 min, ambient temperature 45 ° C and adsorbent dose 0.01 g.  Thermodynamic parameters showed that the absorption process of cadmium metal was spontaneous and endothermic in the temperature range of 288 to 318 K The pseudo-second-order model with adsorption rate constant (K2 = 0.0092) and coefficient of determination (R2 = 0.99) showed that it describes the laboratory data better. Also, the examination of adsorption isotherms showed that the Freundlich isotherm (R2 = 0.96) was more suitable for describing the adsorption process and was more consistent with the laboratory data. According to the results of this research, magnetic oxide nanographene adsorbent with 92.8% efficiency can be used to remove cadmium from aqueous solutions. 

کلیدواژه‌ها [English]

  • Adsorption
  • Isotherm
  • Kinetic
  • Nanomaterials
  • Thermodynamics
Agarwal, M and Singh, K. (2017). Heavy metaLremovaLfrom wastewater using various adsorbents: a review. J. Water Reuse Desal., 7(4), 387-419. DOI: 10.2166/wrd.2016.104.
Ahmadpour, A., Tahmasbi, M., Rohani Bastami, T. and Amel Besharati, J. (2009). Rapid removal of cobalt ion from aqueous solutions by almond green hull. Hazard. Mater., 166, 925-930. DOI: 10.1016/j.jhazmat.2008.11.103.
Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H. and Watanabe, N. (2015). Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. J. Environ. Manage., 150, l03-110.  DOI: 10.1016/j.jenvman.2014.10.032.
Anwar, J., Shafique, U., Salman, M., Dar, A. and Anwar, S. (2010). Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresour. Technol., 101(6), 1752-1755.  DOI: 10.1016/j.biortech.2009.10.021.
Ballen, S. C., Ostrowski, G. M., Steffens, J. and Steffens, C. (2021). Graphene oxide/urease nanobiosensor applied for cadmium detection in river water. IEEE Sens. J., 21(8), 9626-9633.‏ DOI:1109/JSEN.2021.3056042.
Baruah, A., Mondal, S., Sahoo, L. and Gautam, U. K. (2019). Ni-Fe-layered double hydroxide/N-doped graphene oxide nanocomposite for the highly efficient removal of Pb(II) and Cd(II) ions from water. J. Solid State Chem., 280, 120963. DOI:.‏ 10.1016/j.jssc.2019.120963.
Bon, I. C., Salvatierra, L. M., Lario, L. D., Morató, J. and Pérez, L. M. (2021). Prospects in cadmium-contaminated water management using free-living cyanobacteria (Oscillatoria sp.). Water, 13(4), 542.  DOI:  10.3390/w13040542.
Chingombe, P., Saha, B. and Wakeman, R. J. (2006). Sorption of atrazine on conventional and surface modified activated carbons. J. Colloid Interface Sci., 302(2), 408-416. DOI: 10.1016/j.jcis.2006.06.065.
Dreyer, D. R., Park, S., Bielawski, C. W. and Ruoff RS. (2010) The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. DOI: 10.1039/B917103G.
Eslami, B., Ehsani Namin, P., Ghasemi, I., Azizi, H., and Karabi, M. (2017). Ion cadmium adsorption from aqueous solution using nanocomposite based on chitosan/functionalized nano graphene platelet. Nashrieh Shimi va Mohandesi Shimi Iran, 36(2), 115-125. [In Persian]
Farazi, R., Vaezi, M. R., Molaei, M. J., Saeidifar, M. and Behnam Ghader, A. A. (2017). Drug Loading and Release Behavior of Graphene Oxide/Magnetite Nanocomposite. J. Adv. Mater. Technol., 6(1), 33-41. DOI: 10.30501/JAMT.2017.70353. [In Persian]
Fatehi, M. H., Shayegan, J. and Zabihi, M. (2018). A review of methods for removing heavy metal from aqueous media. Iranian journal of Ecohydrology, 5(3), 855-874.‏ DOI: 10.22059/IJE.2018.249854.804. [In Persian]
Fathi, S. and Rezei Kalantary, R. (2017). Removal of hexavalent chromium from water by functionalized magnetic nano porous graphene (NPG/Fe3O4@ COOH). J. Environ. Stud., 43(1), 135-148. DOI: 10.22059/JES.2017.62067. ‏ [In Persian]
 Gharebiglou, M., Mir Shahabeddin, I., Erfan-Niya, H. and Entezami, A. A. (2016). Improving the mechanical and thermal properties of chemically modified graphene oxide/polypropylene nanocomposite. Modares Mechanic. Eng., 16(8), 196-206 [In Persian].
Gholami-Bonabi, L., Ziaefar, N. and Sheikhloie, H. (2020). Removal of phenol from aqueous solutions by magnetic oxide graphene nanoparticles modified with ionic liquids using the Taguchi optimization approach. Water Sci. Technol., 81(2), 228-240 [In Persian].
Goharshadi, E. K. and Moghaddam, M. B. (2015). Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: kinetic and thermodynamic studies. Int. J. Environ. Sci. Technol., 12, 2153-2166. DOI: 10.1007/s13762-014-0748-z.
Gupta, S. H. and Kumar, A. (2019). Removal of nickel (II) from aqueous solution by bio sorption on A. barbadensis Miller waste leaves powder. Appl. Water Sci., 12(1), 27-36. DOI: 10.1016/j.wse.2019.04.003.
Güzel, F. and Sayğılı, H. (2016). Adsorptive efficacy strial processing wastes towards tetracycline in aqueous solution. J. Taiwan Inst. Chem. Eng., 60, 236-240. DOI: 10.1016/j.jtice.2015.10.003.
Hamidianfar, N., Abolhasani, M. H. and Ataabadi, M. (2020). Investigation of the effect of using iron oxide nanoparticles in removing cadmium from aqueous media: A laboratory study. J. Rafsanjan Univ. Med. Sci., 18(12), 1253-1269. DOI: 10.1016/j.jcis.2006.06.065‏. [In Persian]
Heiba, H. F., Taha, A. A., Mostafa, A., Mohamed, L. and Mamdouh. F. (2018). Synthesis and characterization of CMC/MMT nanocomposite for Cu2+ sequestration in wastewater treatment. Korea. J. Chem. Eng., 35 1844-1945. DOI: 10.1007/s11814-018-0096-7.
Jalilian, N., Ebrahimzadeh, H. and Asgharinezhad, A. A. (2018). Determination of acidic, basic and amphoteric drugs in biological fluids and wastewater after their simultaneous dispersive micro-solid phase extraction using multiwalled carbon nanotubes/magnetite nanoparticles@ poly (2-aminopyrimidine) composite. Microchem. J., 143, 337-349. DOI: 10.1016/j.microc.2018.08.037.
Kheiltash, F., Parivar, K., Roodbari, N. H., Sadeghi, B. and Badiei, A. (2020). Effects of 8-hydroxyquinoline-coated graphene oxide on cell death and apoptosis in MCF-7 and MCF-10 breast cell lines. Iran. J. Basic Med. Sci., 23(7), 871. DOI: 10.22038/ijbms.2020.41277.9751.
Li, R., Wang, Z., Zhao, X., Li, X. and Xie, X. (2018). Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water. Environ. Sci. Pollut. Res., 25(31), 31136-31148.‏ DOI: 10.1007/s11356-018-3064-1.
Liu, Y., Fan, W., Xu, Z., Peng, W and Luo, S. (2018). Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: role of surface oxygenic functionaLgroups. Environ. Pollut., 236, 962-970. DOI: 10.1016/j.envpol.2017.10.082.
Mahmoud, M. E., Osman, M. M., Abdel-Aal, H. and Nabil, G. M. (2020). Microwave-assisted adsorption of Cr(VI), Cd(II) and Pb(II) in presence of magnetic graphene oxide-covalently functionalized-tryptophan nanocomposite. J. Alloy. Compound., 823, 153855. DOI: 10.1016/j.jallcom.2020.153855. [In Persian]
Mashak, A., Ghaee, A. and Mobedi, H. (2018). Application of 3D printing technology in novel drug delivery systems: A review. Basparesh, 8(3), 45-56 [In Persian].
Mehrmand, N., Keshavarz Moraveji, M. and Parvareh, A. (2020). Adsorption of Pb(II), Cu(II) and Ni(II) ions from aqueous solutions by functionalised henna powder (Lawsonia Inermis); isotherm, kinetic and thermodynamic studies. Int. J. Environ. Anal. Chem., 1-22. DOI: 10.1080/03067319.2020.1715376.
Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E. and Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water Res., 139, 118-131. DOI:  10.1016/j.watres.2018.03.042.
Mohammadnia, E., Hadavifar, M. and Veisi, H. (2019). Kinetics and thermodynamics of mercury adsorption onto thiolated graphene oxide nanoparticles. Polyhedron., 173, 114139. DOI:‏ 10.1016/j.poly.2019.114139.
Mohammadnia, E., Hadavifar, M. and Veisi, H. (2020). Adsorption of Cadmium (II) onto thiolated graphene oxide and kinetic investigations. Amirkabir J. Civil Eng., 52(1), 275-286.‏ DOI: 10.22060/CEEJ.2018.14660.5710. [In Persian]
N’diaye, A. D. and Sid’Ahmed Kankou, M. (2020). Modeling of adsorption isotherms of pharmaceutical products onto various adsorbents: A short review. J. Mater. Environ. Sci, 11, 1264-1276.‏
Nuhoglu, Y. and Malkoc, E. (2009). Thermodynamic and kinetic studies for environmentally friendly Ni(II) bio sorption using waste pomace of olive oil factory. Bioresour. Technol., 100(8), 2375-2380. DOI:  10.1016/j.biortech.2008.11.016.
Olawale, S. A., Wosilat Funke, A., Haruna Dede, A. and Habeeb, A. (2018). Isotherm studies of the biosorption of Pb(II) and Cu(II) using chicken feather. Asia. J. Adv. Res. Report., 1(4), 1-9. DOI:  10.9734/ajarr/2018/v1i413094.
Pesarakloo, H., Shkrchy, M. and Rezayat, S. M. (2016). Synthesis of magnetic graphene oxide nanosheets for elemination of ketokonazole from water. Nanoscale, 3(1), 55-63 [In Persian].
Rao, R. A. K., Khan, M. A. and Rehman, F. (2010). Utilization of Fennel biomass (Foeniculum vulgari) a medicinal herb for the biosorption of Cd(II) from aqueous phase. Chem. Eng. J., 156(1), 106-113. DOI:‏  10.1016/j.cej.2009.10.005.
Rezaei, H. and Mosafer, E. (2017). Adsorption of Cadmium from synthetic wastewater using modified silicon dioxide nanoparticles. J. Water Soil Conserv., 24(4), 179-193. DOI:‏ 10.22069/JWSC.2017.11457.2587. [In Persian]
Rouniasi, N., Monavari, S. M., Abdoli, M. A., Baghdadi, M. and Karbasi, A. (2018). Removal of heavy metals of cadmium and lead from aqueous solutions using graphene oxide nanosheets process optimization by response surface methodology. Iran. J. Health Environ, 11(2), 197-214‏ [In Persian].
Shahriari, T., Mehrdadi, N. and Tahmasebi, M. (2019). Study of cadmium and cdckel removal from battery industry wastewater by Fe2O3 nanoparticles. Pollut., 5(3), 515-524. DOI:‏ 10.22059/POLL.2018.268193.530
Sheikhmohammadi, A. and Sardar, M. (2013). The removal of penicillin G from aqueous solutions using chestnut shell modified with H2SO4: isotherm and kinetic study. Iran. J. Health Environ‏., 5(4), 497-508 [In Persian].
Shekari, H., Sayadi, M. H., Rezaei, M. R. and Alahresani, A. (2017). An investigation of cadmium removal by nickel ferrite-titanium oxide nanocomposite from aqueous solutions. J. Rafsanjan Univ. Med. Sci., 16(8), 703-714. [In Persian]
 Shokohi, R., Ehsani, H. R. and Tarlani Azar, M. (2014). Removal of lead and cadmium by coral limestone granules of aquatic solutions. J. Environ. Sci. Technol., 16(1), 109-121.‏ [In Persian]
Sreekanth, S. P., Alodhayb, A., Assaifan, A. K., Alzahracd, K. E., Muthuramamoorthy, M., Alkhammash, H. I. and Raghavan, V. (2021). Multi-walled carbon nanotube-based nanobiosensor for the detection of cadmium in water. Environ. Res., 197, 111148.‏  DOI: 10.1016/j.envres.2021.111148.
Wang, J. L. and Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv., 24(5), 427-51. DOI:  10.1016/j.biotechadv.2006.03.001.
Wang, X. S., Ren, J. J., Lu, H. J., Zhu, L., Liu, F., Zhang, Q. Q. and Xie, J. (2010). Removal of Ni(II) from aqueous solutions by nanoscale magnetite. Clean Soil, Air, Water, 38(12), 1131-1136. DOI:‏  10.1002/clen.201000327.
Yan-Jiao, G. (2011). Cadmium and cobalt removal from heavy metal solution using oyster shells adsorbent. In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet) (pp. 1098-1101). IEEE. DOI:10.1109/CECNET.2011.5769384.
Yu, H., Zhang, B., Bulin, C., Li, R. and Xing, R. (2016). High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Report., 6(1), 1-7. DOI: 10.1038/srep36143.
Zare-Dorabei, R., Ferdowsi, S. M., Barzin, A. and Tadjarodi, A. (2016). Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) ions from aqueous solutions by graphene oxide modified with 2, 2′-dipyridylamine: central composite design optimization. Ultrason. Sonochem., 32, 265-276. DOI:. 10.1016/j.ultsonch.2016.03.020