نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی طبیعت، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایران

چکیده

در این پژوهش پتانسیل آبخوان دشت جیرفت ازلحاظ کمی و کیفی بررسی شد. بدین منظور شاخص پتانسیل آّب‌زیرزمینی و شاخص کیفیت آّب‌زیرزمینی با استفاده از فرآیند تحلیل سلسله مراتبی محاسبه شدند. برای محاسبه شاخص پتانسیل آّب‌زیرزمینی از پارامترهای مرتبط استفاده شد. شاخص کیفیت آّب‌زیرزمینی نیز با توجه به مقدار جامدات محلول در آّب‌زیرزمینی، سختی کل و غلظت یون­های سدیم، سولفات و کلراید محاسبه شد. درنهایت با استفاده از قابلیت­های سیستم اطلاعات جغرافیایی، نقشه­های شاخص پتانسیل کمی و کیفی آّب‌زیرزمینی تهیه شد. بر اساس نتایج به‌دست‌آمده دشت جیرفت ازلحاظ پتانسیل کمی به سه رده خوب، متوسط و ضعیف تقسیم­بندی شد که به­ترتیب 42، 32 و 26% از مساحت دشت را به خود اختصاص دادند. از دیدگاه پتانسیل کیفی نیز دشت جیرفت به چهار منطقه نامناسب، ضعیف، قابل‌قبول و خوب تقسیم­بندی شده که به ترتیب 2، 11، 27 و 60% از مساحت دشت جیرفت را تحت پوشش قرار می­دهند. بر اساس نتایج این پژوهش، بهترین پتانسیل آّب‌زیرزمینی در بخش میانی دشت و ضعیف­ترین پتانسیل آّب‌زیرزمینی در حاشیه شرقی و جنوبی آن مشاهده می­شود. ازلحاظ پتانسیل کیفی، به‌جز بخش­های جنوب و جنوب غربی دشت، پتانسیل کیفی آّب‌زیرزمینی در سایر بخش­ها مناسب است. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of the Quantitative and Qualitative Potential of Groundwater Resources in Jiroft Plain using GIS and Analytical Hierarchy Process Model

نویسنده [English]

  • Mohammad Faryabi

Assist. Professor, Department of Ecological Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran

چکیده [English]

In this research, the aquifer potential of Jiroft Plain was investigated in terms of quantity and quality. For this purpose, the groundwater potential index and the groundwater quality index were calculated using the hierarchical analysis process. Related parameters were used to calculate the groundwater potential index. The groundwater quality index was also calculated according to the amount of dissolved solids in the groundwater, the total hardness, and the concentration of sodium, sulfate, and chloride ions. Finally, using the capabilities of the geographic, information system, maps of the quantitative and qualitative potential of groundwater were prepared. Based on the obtained results, Jiroft Plain was divided into three categories, good, medium, and poor, in terms of quantitative potential, which accounted for 42, 32, and 26% of the area of ​​the plain, respectively. From the point of view of qualitative potential, Jiroft plain is divided into four areas: unsuitable, poor, acceptable, and good, which cover 2, 11, 27, and 60% of the area of ​​Jiroft plain, respectively. Based on the results of this research, the best groundwater potential is observed in the middle part of the plain and the weakest groundwater potential is observed in its eastern and southern margins. In terms of quality potential, except for the south and southwest parts of the plain, the quality potential of groundwater is suitable in other parts.

کلیدواژه‌ها [English]

  • Analytical Hierarchy Process
  • GIS
  • Groundwater Potential
  • Jiroft Plain
Abbasnejad, A. (2008). Assessing the flooding susceptibility of Halilroud watershed using GIS. Shahid Bahounar University of Kerman, 255 pp. [In Persian].
Al-Adamat, R., Foster, I. and Baban, S. (2003). Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl. Geogr., 23, 303–324. DOI:10.1016/j.apgeog.2003.08.007
Alijani, F., Nasseri, H., Amirafzali, M. and Shamasi, A. (2018). Effect of Doroud fault on hydrogeology of Doroud-Boroujerd alluvial aquifer, Lorestan province. Iran Water Resour. Res., 14(2), 163-173 [In Persian].
Arjmand, M.R., Kangi, A. and Hafezi Moghadas, N. (2019). The effect of Tous fault on groundwater resources in northern parts of Mashhad plain. Iran J. Earth. Sci., 11(3), 205-214. DOI: 10.30495/IJES.2019.667380
Asghari Moghadam, A., Javanmard, Z., Vadiati, M. and Najib, M. (2015). Evaluating the quality of Mehraban plain groundwater resources using GQI and FGQI methods. Hydrogeomorphol., 2(2), 79-98. DOI:20.1001.1.23833254.1394.2.2.5.4 [In Persian].
Asghari Sarasekanrood, S., Ghale, E. and Ebadi, E. (2021). Investigation of land use changes and its relationship with groundwater level (Case study: Ardabil plain). RS. GIS. Nat. Res., 12(1), 86-106. DOI:20.1001.1.26767082.1400.12.1.5.6 [In Persian].
Barkhori, S., Mahdavi, R., Zehtabian, Gh. and Gholami, H. (2017). Investigating temporal and spatial changes trend of groundwater quality indices (Case Study: Jiroft plain). Iran J. Range Desert Res., 25 (2), 355-365. DOI: 10.22092/IJRDR.2018.116847 [In Persian].
Barua, S., Mukhopadhyay, B.P. and Bera, A. (2020). Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: a case study from Uttar Dinajpur district, West Bengal. Environ.  Earth Sci.,  79, 302. DOI:10.1007/s12665-020-09053-9
Dhar, A., Sahoo, S. and Sahoo, M. (2015). Identification of groundwater potential zones considering water quality aspect. Environ. Earth Sci., 74, 5663–5675. DOI:10.1007/s12665-015-4580-7
Etishree, A., Rajat, A., Garg, R.D. and Garg, P.K. (2013). Delineation of groundwater potential zone: An AHP/ANP approach. J. Earth Sys. Sci., 122(3), 887-898. DOI:10.1007/s12040-013-0309-8
Mehrabi, A. and Pourkhosravani, M. (2019). Relationship between groundwater resources and quaternary faults of Sirjan plain using weight of evidence method. Geogr. Res., 34(2), 175-182. DOI: 10.29252/geores.34.2.175 [In Persian].
Nadjla, B., Abdellatif, D. and Assia, S. (2021). Mapping of the groundwater vulnerability to saline intrusion using the modified GALDIT model (Case: the Ain Temouchent coastal aquifer, (North‑Western Algeria)). Environ. Earth Sci., 80, 319. DOI:10.1007/s12665-021-09614-6
Najafzadeh, H., Zehtabian, G., Khosravi, H. and Golkarian, A. (2015). The effect of climatic and geology parameters on groundwater resources quantitative and qualitative (Case study: Mahvelat). Iran J. Ecohydrology, 2(3), 325-336. DOI:10.22059/IJE.2015.57301 [In Persian].
Owolabi, S. T., Madi, K., Kalumba, A.M., Ahmed, M. K. and Israel, R.O. (2020). A groundwater potential zone mapping approach for semi-arid environments using remote sensing (RS), geographic information system (GIS), and analytical hierarchical process (AHP) techniques: a case study of Buffalo catchment, Eastern Cape, South Africa. Arab. J. Geosci., 13, 1184. DOI:10.1007/s12517-020-06166-0
Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V. and Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environ. Geol., 55(3), 467–475. DOI:10.1007/s00254-007-0992-3
Piscopo, G. (2001). Groundwater vulnerability maps, explanatory notes, Castlereagh Catchment, NSW. Available online at: http://www.dlwc.nsw.gov.au/care/water/groundwater/reports. Accessed 20, November 2012.
Rahimi, D. (2012). Mapping of groundwater potential zone in sharkurd plain. Geogr. Environ. Plann., 22(44), 127-142. DOI:20.1001.1.20085362.1390.22.4.8.5 [In Persian].
Rahimi, M. and Solaimani, K. (2017). Remote sensing and GIS based assessment of groundwater potential zones mapping using multi-criteria decision making technique. Iran Water Manage. Sci. Eng., 10 (35), 27-31. DOI:20.1001.1.20089554.1395.10.35.3.6 [In Persian].
Ram, A., Tiwari, S.K., Pandey, H.K.,  Chaurasia,A. K.,  Singh, S. and   Singh, Y.V. (2021). Groundwater quality assessment using water quality index (WQI) under GIS framework. Appl. Water Sci., 11, 46. DOI:10.1007/s13201-021-01376-7
Rao, P. J., Harikrishna, P., Srivastav, S. K., Satyanarayana, P. V. V. and Rao, B. B. D. (2009). Selection of groundwater potential zones in and around Madhurwada Dome, Visakhapatnam District- a GIS approach. J. Indian Geophyl. Union, 13(4), 191–200.
Saraf, A. K. and Chaudhary, P. R. (2004). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharges sites. Int. J. Remote Sens., 19(10), 1825-1841. DOI:10.1080/014311698215018
Saranya, T. and Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Model. Earth Syst. Environ. DOI:10.1007/s40808-020-00744-7
Sarbazi, M., Feiznia, S. and Mahdavi, M. (2018). Study of groundwater quality of Mashhad aquifer using GIS and multivariate statistical techniques. J. Range. Watershed Manage., 71(3), 645-657. DOI:10.22059/JRWM.2018.101446.715 [In Persian].
Schoeller, H. (1977). Geochemistry of groundwater. In: Groundwater studies- An international guide for research and practice. UNESCO, Paris, 15, 1-18.
Seif, A. and Kargar, A. (2011). Groundwater potential zone mapping using Geographical Information Systems and Analytical Hierarchy Process; Case study: Sirjan plain. Nat. Geog., 4(12), 75-90 [In Persian].
Shahidasht, A. R. and Abbasnejad, A. (2011). Evaluation of the environmental impacts of aquifer depletion in Jiroft plain and prediction of the future status. Iran Water Resour. Res., 7(1), 77-81 [In Persian].
Shahinuzzaman, M., Haque, M. N. and Shahid, S. (2021). Delineation of groundwater potential zones using a parsimonious concept based on catastrophe theory and analytical hierarchy process. Hydrogeol. J., 29, 1091–1116. DOI:10.1007/s10040-021-02322-2
Shojaheidari, R. (2007). Effect of agricultural activities on groundwater of Jiroft plain. MSc dissertation, Shahid Beheshti University of Tehran, Tehran, Iran. 160 pp.