نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان،ایران

2 دانشیار، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

3 استاد، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

4 دانشیار، گروه محیط‌زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

5 دانشیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایلام، ایلام، ایران

چکیده

فلوراید از جمله ترکیبات توسعه یافته‌ای است که از راه‌های مختلفی می‌تواند وارد منابع آبی شود. سازمان جهانی بهداشت حداکثر غلظت مجاز آن را در آب آشامیدنی  mg/l5/1 توصیه نموده است، بطوریکه غلظت بیش از حد مجاز آن می‌تواند برای سلامتی موجودات زنده و بوم­سازگان مضر باشد. هدف این پژوهش تعیین کارایی کربن فعال اصلاح شده به روش حرارتی- شیمیایی از میوه بلوط در حذف فلوراید بود. این پژوهش در یک سیستم ناپیوسته در مقیاس آزمایشگاهی انجام شد. بدین منظور اثر پارامترهای مؤثر نظیر زمان، pH، غلظت، دوز جاذب و سایر عوامل دیگر بررسی شد. نتایج حاصل از آزمایش‌ها نشان داد که بیش­ترین مقدار حذف در مدت زمان min 90، 3pH=، دوزجاذب  g/l1/0 و با غلظت آلاینده mg/l 50 صورت می‌گیرد. نتایج مدل‌های سنتیکی نشان داد که مدل فروندلیچ با ضریب تعیین (863/0=R2) نسبته به مدل لانگمویر با ضریب تعیین (736/0=R2) برای توصیف رفتار سنتیکی جاذب مدل بهتری است. تاکنون اکثر روش­های جذب برای حذف غلظت آلاینده mg/l 30 انجام شده است در مطالعه حاضر با غلظت آلاینده‌ ورودی mg/l 50 می‌توان اظهار نمود که کربن فعال اصلاح شده میوه بلوط به­عنوان یک جاذب ارزان­قیمت، کارآمد و در دسترس برای حذف فلوراید از محلول‌های آبی محسوب می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Removal Efficiency of Fluoride from Aqueous Solutions Using Modified Carbon of Oak Fruit: Isotherm and Kinetic Studies

نویسندگان [English]

  • Ali Ramezani 1
  • Bahareh lorestani 2
  • Soheil Sobhan Ardakani 3
  • Mehrdad Cheraghi 4
  • Heshmatollah Nourmoradi 5

1 Ph.D.. Scholar, Department of the Environment. College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamadan. Hamadan. Iran

2 Assoc. Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamadan, Iran

3 Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

4 Assoc. Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

5 Assoc. Professor, Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran

چکیده [English]

Fluoride is one of the developed compounds that can enter water resources in different ways. The World Health Organization has recommended its maximum permissible concentration in drinking water of 1.5 mg/l so that its concentration exceeding the permissible limit can be harmful to the health of living organisms and ecosystems. The aim of this study was to determine the efficiency of activated carbon modified by the thermo-chemical method from oak fruit in fluoride removal. This research was conducted in a discontinuous system on a laboratory scale, and for this purpose, the effect of effective parameters such as time, pH, concentration, adsorbent dose, and other factors was investigated. The results of the experiments showed that the maximum amount of removal takes place during 90 min, pH=3, adsorbent dose of 0.1 g/l, and pollutant concentration of 50 mg/l. The results of the synthetic models showed that the Freundlich model with the coefficient of determination (R2=0.863) is a better model than the Langmuir model with the coefficient of determination (R2=0.736) to describe the synthetic behavior of the absorber. Until now, most absorption methods have been performed to remove the pollutant concentration of 30 mg/l. In the current study, with the input pollutant concentration of 50 mg/l, it can be stated that the activated carbon modified from the oak fruit is a cheap, efficient, and effective adsorbent. It is considered available to remove fluoride from aqueous solutions.

کلیدواژه‌ها [English]

  • Activated Carbon
  • Adsorbent
  • Aqueous Solutions
  • Fluorine
  • Oak
Ahmadi, A., Forutan, R. Esmaeili, H. and Tamjidi, S. (2020). The role of bentonite clay and bentonite [email protected]2O4 composite and their physico–chemical properties on the removal of Cr(II) and Cr(VI) from aqueous media. Environ. Sci. Poll. Res., 27(12), 14044-14057. III: 10.1007/s11356-020-07756-x.
Akar, Sh., Lorestani, B. Sobhanardakani, S. Cheraghi, M. and Moradi, O. (2019). Surveying the efficiency of Plantanus Orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample. Environ. Monit. Assess., 191(6), 373. DOI: 10.1007/s10661-019-7479-z.
Bazrafshan, E., Balarak, D., Ahmad Panahi, H. Kamani, H. and Mahvi, A. H. (2016). Fluoride removal from aqueous solution by cupric oxide nanoparticles. Fluoride. 49(3), 233-44 [In Persian].
Bhaumik, R., Mondal, N. K., Das, B., Roy, P., Pal, K. C. and Datta, J. K. (2012). Eggshell powder as an adsorbent for removal of fluoride from aqueous solution: Equilibrium, kinetic and thermodynamic studies. J. Chem., 9, 1457-80. DOI:.10.1155/2012/790401.
Cheraghi, M. Sobhanardakani, S. Zandipak, R. Lorestani, B. and Merrikhpour, H. (2015). Removal of Pb(II) from aqueous solutions using waste tea leaves. Iran. J. Toxicol., 9(28), 1247-1253.

Choong, C. E., Kim, M., Yoon, S., Lee, G. and Park, C. M. (2018). Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water. J. Taiwan Inst. Chem. Eng., 93, 306-314. DOI.

Craig, L., Lutz, A., Berry, K. A. and Yang, W. (2015). Recommendations for fluoride limits in drinking water based on estimated daily fluoride intake in the Upper East Region, Ghana. Sci. Total Environ., 532(1), 127-37. DOI. 10.1016/j.scitotenv.2015.05.126.
Ghafoori, M., Cheraghi, M., Kiani Sadr, M., Lorestani, B. and Sobhanardakani, S. (2022). Magnetite graphene oxide modified with β-cyclodextrin as an effective adsorbent for the removal of methotrexate and doxorubicin hydrochloride from water. Environ. Sci. Pollut. Res., 29(23), 35012-35024. DOI. 10.1007/s11356-022-18725-x.
Gomez-Hortiguela, L., Perez-Pariente, J., Garcia, R., Chebude, Y. and Diaz, I. (2013). Natural zeolites from Ethiopia for elimination of fluoride from drinking water. Sep. Purif. Technol., 120, 224-229. DOI.10.1016/j.seppur.2013.10.006.
Khalil, H. P. S. A., Jawaid, M., Firoozian, P., Rashid, U., Islam, A. and Akil, H. M. (2013).  Activated carbon from various agricultural wastes by chemical activation with KOH: preparation and characterization, J. Biobase. Mater. Bioenergy, 7, 708–714. DOI. 10. 1166/jbmb. 2013.
Hajipour, F., Asad, S., Amoozegar, M. A., Javidparvar, A. A., Tang, J., Zhong, H. and Khajeh, K. (2021). Developing a fluorescent hybrid nanobiosensor based on quantum dots and azoreductase enzyme formethyl red monitoring. Iran. Biomed. J., 25(1), 8-20. DOI. 10.29252/ibj.25.1.8.
Hameed, B., Ahmad, A. and Aziz, N. (2007). Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Eng. J., 133(1–3), 195-203. DOI.
Janovs, P., Buchtova, H. and Ryznarova, M. (2003). Sorption of dyes from aqueous solution onto fly ash. Water Res., 37(20), 4938-4944. DOI. 10.1016/j.watres.2003.08.011.
Khodadadi, M., Mahvi, A. H., Vazieni, H., Khosravi, R., Dorri, H. and Saghi, M. H. (2015). Investigation of fluoride removal efficiency from aqueous solution by pistachio and almonds crust. J. Environ. Health Eng., 2(3), 238-248. DOI: 10.18869/acadpub.jehe.2.3.238 [In Persian]
Liu A., Ming J. and Ankumah R.O. (2005). Nitrate contamination in private wells in rural Alabama, United States. Sci. Total Environ., 346(1-3), 112-120. DOI. 10.1016/j.scitotenv.2004.11.019.
Liu, X-Y., Huang, M., Ma, H-L., Zhang, Z-Q., Gao, J-M., Zhu, Y-L., Han, X-J. and Guo, X-Y. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15(10), 7188–7196. DOI. 10.3390/molecules15107188.
Mahvi, A. H., Kord Mostafapour, F. and Balarak, D. (2019). Adsorption of fluoride from aqueous solution by eucalyptus bark activated carbon: Thermodynamic analysis.  Fluoride, 52(4), 562-568.
Maleki, A. and Eslami, A. (2011). Isotherm and kinetics of arsenic (V) adsorption from aqueous solution using modified wheat straw. Iran. J. Health Environ., 3(4), 439-450 [In Persian].
Malkoc, E. and Nuhoglu, Y. (2010). Nickel (II) adsorption mechanism from aqueous solution by a new adsorbent—Waste acorn of Quercus ithaburensis. Environ. Prog. Sustain. Eng., 29, 297-306. DOI.10.1002/ep.10412.
Manoucheri-Tabar, H. and Ebrahimi, A. (2018). Comparison of efficiency for cadmium removal from aqueous solutions by using active carbon provided by oak fruit cap and its modification by magnetic nanoparticles. J. Health Syst. Res., 14
(3), 307-313. DOI. 10.22122/jhsr.v14i3.3197. [In Persian]

Nizam, S.,  Singh, H., Indra, V. and Sen, S. (2022). High levels of fluoride in groundwater from Northern parts of Indo-Gangetic plains reveals detrimental fluorosis health risks. Environ. Adv., 8, 100200. DOI. 10.1016/j.envadv.2022.100200.

Robinson, T., Chandran, B. and Nigam, P. (2002). Removal of dye from an artificial textile dye effluent by two agridues, corbon and barley husk. Environ. Int., 28(1), 29-33. DOI. 10.1016/s0160-4120(01)00131-3.
Takmil, F., Esmaeili, H., Mousavi, M. and Hashemi, A. (2020). Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Adv. Powd. Technol., 31(8), 3236-3245. DOI. 10.1016/j.apt.2020.06.015.
Talebzadeh, F., Zandipak, R. and Sobhanardakani, S. (2016). CeO2 nanoparticles supported on CuFe2O4 nanofibers as novel adsorbent for removal of Pb(II), Ni(II) and V(V) ions from petrochemical wastewater. Desalin. Water Treat., 57(58), 28363-28377. DOI. 1080/19443994.2016.1188733.
Vazquez-Guerrero, A., Alfaro-Cuevas–Villanueva, R., Rutiaga- Quinones, J. G. and Cortes–Martinez, R. (2016). Fluoride removal by aluminum – modified pine sawdust; effect of competitive ions. Ecol. Eng., 94, 365-379. DOI.10.1016/j.ecoleng.2016.05.070.
Yadav, A. K., Abbassi, R., Gupt, A. and Dadashzadeh, M. (2013). Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol. Eng, 52, 211-218. DOI. 10.1016/j.ecoleng.2012.12.069.
Yousefi, M., Ghoohani, M. and Mahvi, A. H. (2018). Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht City, Northwest of Iran. Ecotoxic. Environ. Saf., 148, 426-430. DOI. 10.1016/j.ecoenv.2017.10.057. 
Zandipak, R., Sobhanardakani, S. and Shirzadi, A. (2020). Synthesis and application of nanocomposite Fe3O4@SiO2@CTAB–SiO2 as a novel adsorbent for removal of cyclophosphamide from water samples. Separ. Sci. Technol., 55(3), 456-470. DOI.10.1080/01496395.2019.1566262.
Zarei, S., Dehvari, M., Jamshidi, B. and Sadani, M. (2015). Investigation of isotherm and kinetic of nickel adsorption by acorn ashes from aqueous solutions. J. Rafsanjan Univ. Med. Sci., 13(9), 897-908. [In Persian]
Zarrabi, M., Noori Sepehr, M., Amrollahi, M. and Taghavi, M. (2015). Biosorption of fluoride by apple pulp from aqueous solution. Koomedh,16(2), 213-219 [In Persian].