Document Type : Research Paper

Authors

1 PhD Scholar, Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran

2 Professor, Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran

3 Assist. Professor., Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran

Abstract

The presence of dyes in the aquatic environment can cause soil/water pollution, problems for human health, and abnormal plant growth behavior. In the present study, functionalized polyethersulfone nanofiltration membranes were prepared by ferroxane fumarate nanoparticles. Ferroxane fumarate nanoparticles were characterized by SEM and FTIR analyzes. The effect of nanoparticles on the performance and properties of membranes was determined in terms of membrane pore size, porosity, hydrophilicity, and separation of milk powder solution by membranes. The hydrophilicity of the membranes was determined by studying the pure water flux and the contact angle of the water. Hydrophilicity increased significantly in membranes containing 0.5% wt. of ferrooxane fumarate nanoparticles. The results of measuring the pure water flux passing through the prepared membranes showed that after functionalization of the polysulfone nanofiltration membrane by ferroxane fumarate nanoparticles, the permeability of this membrane increased more than three times. The maximum flux recovery ratio and the minimum irreversible permeability decay rate obtained by the M0.5 membrane were 95.20 and 4.8%, respectively.  Moreover, M0.5 showed the highest rejection for dyes of direct red 16 (99%) and methylene blue (98%). The related results proved that an antifouling fumarate ferroxane functionalized membrane can be efficiently applied for the removal of dyes.

Keywords

Main Subjects

Bai, L., Liu, Y., Ding, A., Ren, N., Li, G. and Liang, H. (2019). Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal. Chem. Eng. J., 358, 1519-1528. DOI: 10.1016/j.cej.2018.10.147.
Bai, L., Wu, H., Ding J., Ding, A., Zhang X., Ren, N., Li, G. and Liang, H. (2020). Cellulose nanocrystal-blended polyethersulfone membranes for enhanced removal of natural organic matter and alleviation of membrane fouling. Chem. Eng. J., 382, 122919. DOI: 10.1016/j.cej.2019.122919.
Balkanloo, P. G., Mahmoudian, M. and Hosseinzadeh, M. T. (2020). A comparative study between MMT-Fe3O4/PES, MMT-HBE/PES, and MMT-acid activated/PES mixed matrix membranes. Chem. Eng. J., 396, 125188. DOI: 10.1016/j.cej.2020.125188.
Barzegar, H., Zahed, M. A. and Vatanpour, V. (2020). Antibacterial and antifouling properties of Ag3PO4/GO nanocomposite blended polyethersulfone membrane applied in dye separation. J. Water Process Eng., 38, 101638. DOI: 10.1016/j.jwpe.2020.101638.
Chen, W., Su, Y., Peng, J., Zhao, X., Jiang, Z., Dong, Y., Zhang, Y., Liang, Y. and Liu, J. (2011). Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environ. Sci. Technol., 45(15), 6545-6552. DOI: 10.1021/es200994n.
Cortalezzi, M. M., Rose, J., Wells, G. F., Bottero, J. Y., Barron, A. R. and Wiesner, M. R. (2003). Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. J. Member. Sci., 227(1-2), 207-217. DOI: 10.1016/j.memsci.2003.08.027.
Ghaemi, N., Madaeni, S. S., Daraei, P., Rajabi, H., Zinadini, S., Alizadeh, A., Heydari, R., Beygzadeh, M. and Ghouzivand, S. (2015). Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles. Chem. Eng. J., 263, 101-112. DOI: 10.1016/j.cej.2014.10.103.
Hamid, M. F., Abdullah, N., Yusof, N., Ismail, N. M., Ismail, A. F., Salleh, W. N., Jaafar, J., Aziz, F. and Lau, W. J. (2020). Effects of surface charge of thin-film composite membrane on copper (II) ion removal by using nanofiltration and forward osmosis process. J. Water Process Eng., 33, 101032 DOI: 10.1016/j.jwpe.2019.101032.
Kamari, S. and Shahbazi, A. (2020). Biocompatible Fe3O4@ SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long–term operation and reusability tests. Chemosphere 243, 125282. DOI: 10.1016/j.chemosphere.2019.125282.
Koulivand, H., Shahbazi, A., Vatanpour, V. and Rahmandoust, M. (2020). Development of carbon dot-modified polyethersulfone membranes for enhancement of nanofiltration, permeation and antifouling performance. Sep. Purif. Technol., 230, 115895. DOI: 10.1016/j.seppur.2019.115895.
Lin, Y., Shen, Q., Kawabata, Y., Segawa, J., Cao, X., Guan, K., Istirokhatun, T., Yoshioka, T. and Matsuyama, H. (2020). Graphene quantum dots (GQDs)-assembled membranes with intrinsic functionalized nanochannels for high-performance nanofiltration. Chem. Eng. J., 127602. DOI: 10.1016/j.cej.2020.127602.
Mahmoudian, M., Balkanloo, P. G. and Nozad, E. (2018). A facile method for dye and heavy metal elimination by pH sensitive acid activated montmorillonite/polyethersulfone nanocomposite membrane. Chinese J. Polym. Sci., 36(1), 49-57. DOI: 10.1007/s10118-018-2004-3.
Makhetha, T. and Moutloali, R. (2021). Incorporation of a novel Ag–Cu@ ZIF-8@ GO nanocomposite into polyethersulfone membrane for fouling and bacterial resistance. J. Member. Sci., 618, 118733. DOI: 10.1016/j.memsci.2020.118733.
Marjani, A., Nakhjiri, A. T., Adimi, M., Jirandehi, H. F. and Shirazian, S. (2020). Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci. Rep., 10 (1), 1-11. DOI: 10.1038/s41598-020-58472-y.
Mehrjo, F., Pourkhabbaz, A. and Shahbazi, A. (2021). PMO synthesized and functionalized by p-phenylenediamine as new nanofiller in PES-nanofiltration membrane matrix for efficient treatment of organic dye, heavy metal, and salts from wastewater. Chemosphere 263,128088. DOI: 10.1016/j.chemosphere.2020.128088.
Moattari, R. M., Rahimi, S., Rajabi, L. and Derakhshan, A. A. (2015). Statistical investigation of lead removal with various functionalized carboxylate ferroxane nanoparticles. J. Hazard. Mater., 283, 276-291. DOI: 10.1016/j.jhazmat.2014.08.025.
Moradi, G., Zinadini, S. and Rajabi, L. (2020a). Development of high flux nanofiltration membrane using para-amino benzoate ferroxane nanoparticle for enhanced antifouling behavior and dye removal. Process Saf. Environ. Prot., 144, 65-78 DOI: 10.1016/j.psep.2020.06.044
Moradi, G., Zinadini, S. and Rajabi, L. (2020b). Development of the tetrathioterephthalate filler incorporated PES nanofiltration membrane with efficient heavy metal ions rejection and superior antifouling properties. J. Environ. Chem. Eng., 8(6), 104431. DOI: 10.1016/j.jece.2020.104431.
Oulad, F., Zinadini, S., Zinatizadeh, A. A. and Derakhshan, A. A. (2020). Fabrication and characterization of a novel tannic acid coated boehmite/PES high performance antifouling NF membrane and application for licorice dye removal. Chem. Eng. J., 397, 125105. DOI: 10.1016/j.cej.2020.125105.
Paseta, L., Antorán, D., Coronas, J. and Téllez, C. (2019). 110th anniversary: polyamide/metal–organic framework bilayered thin film composite membranes for the removal of pharmaceutical compounds from water. Ind. Eng. Chem. Rese., 58 (10), 4222-4230. DOI: 10.1021/acs.iecr.8b06017.
Pendergast, M. M. and Hoek, E. M. (2011). A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 4 (6), 1946-1971. DOI: 10.1039/C0EE00541J.
Peydayesh, M., Mohammadi, T. and Bakhtiari, O. (2019). Water desalination via novel positively charged hybrid nanofiltration membranes filled with hyperbranched polyethyleneimine modified MWCNT. J. Ind. Eng. Chem., 69, 127-140.DOI: 10.1016/j.jiec.2018.09.007.
Pirsaheb, M., Farahani, M. H. D. A., Zinadini, S., Zinatizadeh, A. A., Rahimi, M. and Vatanpour, V. (2019). Fabrication of high-performance antibiofouling ultrafiltration membranes with potential application in membrane bioreactors (MBRs) comprising polyethersulfone (PES) and polycitrate-Alumoxane (PC-A). Sep. Purif. Technol., 211, 618-627. DOI: 10.1016/j.seppur.2018.10.041.
Rahimpour, A., Madaeni, S. S. and Mansourpanah, Y. (2010). Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. J. Member. Sci., 364(1-2), 380-388. DOI: 10.1016/j.memsci.2010.08.046.
Saniei, N., Ghasemi, N., Zinatizadeh, A. A., Zinadini, S., Ramezani, M. and Derakhshan, A. A. (2020). Preparation and characterization of a novel antifouling nano filtration poly ethersulfone (PES) membrane by embedding goethite-tannic acid nanoparticles. Sep. Purif. Technol., 241, 116646. DOI: 10.1016/j.seppur.2020.116646.
Sobhanardakani, S., Ghoochian, M., Jameh-Bozorghi, S. and Zandipak, R. (2017). Assessing of removal efficiency of Indigo carmine from wastewater using MWCNTs. Iran. J. Sci. Technol., Trans. A: Sci., 41 (4), 1047-1053. DOI: 10.1007/s40995-017-0312-z.
Sobhanardakani, S., Zandipak, R., Khoshsafar, H. and Zandipak, R. (2016). Removal of cationic dyes from aqueous solutions using NiFe2O4 nanoparticles. J. Water Supply: Res. Technol. - AQUA, 65 (1), 64-74. DOI: 10.2166/aqua.2015.046.
Vatanpour, V. and Haghighat, N. (2019). Improvement of polyvinyl chloride nanofiltration membranes by incorporation of multiwalled carbon nanotubes modified with triethylenetetramine to use in treatment of dye wastewater. J. Environ. Manage., 242, 90-97. DOI: 10.1016/j.jenvman.2019.04.060.
Yee, S. K., Ong, N. T. J., Lim, S. C. J., Zin, N. M., Dahlan, S. H., Ashyap, A. Y. I. and Soon, C. F. (2021). Microwave sensing of ammonia and iron concentration in water based on complementary double split-ring resonator. Sens. Actuators Rep., 100044. DOI: 10.1016/j.snr.2021.100044.
Zandipak, R. and Sobhanardakani, S. (2016). Synthesis of NiFe2O4 nanoparticles for removal of anionic dyes from aqueous solution. Desalin. Water Treat., 57(24), 11348-11360. DOI: 10.1080/19443994.2015.1050701.
Zangeneh, H., Zinatizadeh, A. A. and Zinadini, S. (2020). Self-cleaning properties of L-Histidine doped TiO2-CdS/PES nanocomposite membrane: Fabrication, characterization and performance. Sep. Purif. Technol., 240, 116591. DOI: 10.1016/j.seppur.2020.116591.