برآورد دقت روابط انتقال دبی رسوب رودخانه خنداب، ایستگاه جوشیروان با استفاده از مدلHEC-RAS

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، بخش آبخیزداری مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، اراک، ایران

2 استادیار، بخش مهندسی رودخانه و سواحل پژوهشکده حفاظت خاک و آبخیزداری کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

با توجه به پیچیدگی مسائل هیدرولیکی و رسوبی در رودخانه­ها امکان حل معادلات به روش تحلیلی ممکن نیست، لذا از روش­های عددی استفاده می­شود. در پژوهش حاضر از مـدلHEC-RAS 5.0.3 ، به ­منظور شبیه ­سازی جریان رسوبات رودخانه خنداب استفاده شد. بدین منظور با استفاده از نقشه توپوگرافی مسیر، DEM و TIN  از مسیر رودخانه شراء با مقیاس 1:2000، در بسته الحاقی HEC-GeoRAS در نـرم­افزار ArcMap، تعداد 200 مقطع در طول km 5 رودخانه تهیه شد. اطلاعات مربوطه جهت معرفی هندسه رودخانه به مدل معرفی شد. دبی با دوره بازگشت 25، 50 و yr 100 محاسبه و برای شبیه­سازی هیدرولیکی رودخانه مورد استفاده قرار گرفت. شرایط جریان شبه غیرماندگار، شرایط مرزی و دانه­بندی مواد بستر رودخانه به مدل معرفی شد. با استفاده از رابطه­های برآورد انتقال رسوب، ظرفیت انتقال رسوب رودخانه محاسبه شد. نتایج نشان داد، رابطه‌ میر- پیتر و مولر با 26% خطا نسبت به روابط دیگر به مقادیر رسوبات مشاهداتی نزدیک­تر می­باشد. همچنین، بررسی وضعیت فرسایش و رسوب‌گذاری رودخانه با استفاده از معیارهای هولشتروم و شیلدز نشان می­دهد که قسمتی از مقاطع این رودخانه در وضعیت فرسایشی و قسمتی در حال رسوب‌گذاری قرار دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Accuracy Estimation of Sediment Discharge Transfer Relationships of Khondab River, Joshirvan Station using HEC-RAS Model

نویسندگان [English]

  • Amir Moradinejad 1
  • Seyed Ahmad Hosseini 2
1 Assist. Professor, Soil Conservation and Watershed Management Research Department, Markazi Agricultural and Natural Resources Research and Education Center, Agricultural Research Education & Extension Organization (AREEO), Arak, Iran
2 Assist. Professor, Soil Conservation and Watershed Management Institute, Agricultural Research Education & Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Due to the complexity of hydraulic and sedimentary problems in rivers, it is not possible to solve the equations analytically, so numerical methods are used. In the present study, the HEC-RAS 5.0.3 model was used to simulate the sediment flow of the Khondab River. For this purpose, using the topographic map of the route, DEM and TIN of the River route with a scale of 1: 2000, in the HEC-GeoRAS extension package in ArcMap software, 200 sections along 5 km of the river were prepared. Relevant information was inserted to introduce the river geometry to the model. The flow rate was calculated with 25-, 50- and 100-year return periods and was used for river hydraulic simulation. Quasi-volatile flow conditions, boundary conditions and granulation of riverbed materials were introduced to the model. Using sediment transport estimation relationships, river sediment transport capacity was calculated. The results showed that the Mir-Peter and Müller relationship with 26% error is closer to the observed sediment values ​​than the other relationships. Moreover, the study of erosion and sedimentation status of the river using Hjulstrom and Shields criteria showed that a part of the sections of this river is in erosion status and another part is being sedimenting. 

کلیدواژه‌ها [English]

  • Discharge sediment
  • Erosion
  • HEC-RAS model
  • Khondab
  • River Flow
Ackers, P. and White, W. R. (1973). Sediment transport: new approach and analysis. J. Hydraul. Division, ASCE, 99(HY11), 2040-2060.
Asadi, F., Fazlavali, r., Emadi, A. and Asadi, M. (2011). Hydraulic simulation of river sediment using a mathematical model HEC-RAS4.0 (Case Study: River Hall). Third National Conference on Integrated Water Resources Management. Sari Agri. Sci. Nat. Resour., Sari [In Persian].
Azizian, A. and Samadi, A. (2019). Determination of the potential of mountainous sand and gravel
mines, using GIS and geomorphologic models integration, case study: Ferdows and Ghaen Basins. J. Watershed Eng. Manage., 10(4), 564-579 [In Persian].
Canfield, H. E., Wilson, C. J., Lane, L. J, Crowell, K. J. and Thomas, W. A. (2005). Modeling scour and deposition in ephemeral channels after wildfire. J. Catena, 61(2-3), 273–291.
Cook, A. and Merwade, V. (2009). Effect of Topographic data geometric configuration and modeling approach on flood inundation Mapping. J. Hydrol., 377(1-2), 131 142
Duncan, W., Warburton, J. and Bracken, L. (2007). Gravel extraction and plan form change in a wandering gravel-bed river: The River Wear, Northern England. Department of Geography, Durham University. DH1 3LE, UK.
Engelund, F. and Hansen, E. (1972). a monograph on sediment transport in alluvial streams, teknish Forlag, Technical press, Copenhagen, Denmark.
Gibson, S., Brunner, G., Piper, S. and Jensen, M. (2006). Sediment transport computations with HEC-RAS. Proceedings of the Eighth Federal Interagency Sedimentation Conference (8thFISC), April 2-6, 2006, Reno, NV, USA
Honarbakhsh, A., Hedayatipour, K. And Samadi, H. (2021). Investigation of the effects of sand harvesting on the hydromorphological behavior of the river canal, a case study of the dry river Farsan. Quant. Geomorph. Res., 9(1), 203-216 [In Persian].
Hosseini, M. and Abrishami, J. (2004). Hydraulics of open channels. Eleventh edition. Imam Reza University, Mashhad [In Persian].
Laursen, E. M. (1958). Total sediment load of streams. J. Hydraul. Division. ASCE, 84(HY1), 1530-1 - 1530-36.
Lorang, M. S. and Aggett, G. (2005). Potential sedimentation impacts related to dam removal: Icicle Creek, Washington, U.S.A.
Maddock, T., In Sediment Engineering, Manuals and Reports on Engineering Practice (ed. Vanoni, V. A.), ASCE, New York, USA, 2006, vol. 54.
Meyer-Peter, E. and Muller, R. (1948). Formulas for bed-load transport. Proceedings, 3rd Meeting of International Association Hydraulic Resources, Stockholm, 39-64.
Moradinejad, A., Haghiabi, A. H., Torabi, H. and Jabari, A. (2014). Qara-Chai River sediment survey of the Markazi province numerical model HEC-RAS.4. Int. Res. J. Appl. Basic Sci., 8(10), 1628-1636. [In Persian].
Pappenberger, F., Bevena, K., Horrittb, M. and Blazkova, S. (2005). Uncertainty in the calibration of effective roughness parameters in HEC-RASS using inundation and downstream level observation. J. Hydrol., 302(1-4), 46:69.
Piro, M., Ghomshi, M., Nohani, A. and Ravansalar, M. (2012). Status of river sediment numerical model HEC-RAS.4, Bashar Yasooj River case study. International Conference on Water Basin (challenges and opportunities). Shahrekord University. [In Persian].
Sracek, O., Bohdan, k., Martin, M., Vladimir, M., Frantisek, V., Zbynek, V. and Imasiku, N. (2012). Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 112, 174-188.
Toffaleti, F. B. (1968). A procedure for computation of total river sand discharge and detailed distribution, bed to surface. Technical Report NO. 5, Committee on channel stabilization, US army corps of engineers, November, 1968.
USACE, (2010). HEC-RAS River Analysis System, Reference Manual for Version 4.1.0 Report CPD-69, Hydrologic Engineering Center, Davis, CA.
Wilcock, P. R. and Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. J. Hydraul. Eng., ASCE, 129(2), 120-128.
Wishart, D., Warburton, J. and Bracken, L. (2008). Gravel extraction and planform change in a wandering gravel-bed river: The River Wear, Northern England. Geomorph., 94(1-2), 131-152.
Yang, C. T. (1973). Incipient motion and sediment transport. J. Hydraul. Division, ASCE, 99(HY10), 1679-1704.
Yang, C. T. (1984). Unit stream power equation for gravel. J. Hydraul. Division, ASCE, 110(12), 1783-1797.
دوره 8، شماره 1
فروردین 1401
صفحه 161-176
  • تاریخ دریافت: 03 تیر 1400
  • تاریخ بازنگری: 03 شهریور 1400
  • تاریخ پذیرش: 05 شهریور 1400
  • تاریخ اولین انتشار: 05 شهریور 1400