بررسی عملکرد جاذب زئولیتی اصلاح شده با نانوذرات مس جهت سولفور زدایی از سوخت هیدروکربنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

2 استادیار، گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد آیت‌الله آملی، آمل، ایران

3 دانشیار، گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

4 استادیار، گروه مهندسی شیمی، دانشکده فنی مهندسی، واحد قائم‌شهر، دانشگاه آزاد اسلامی، قائم‌شهر، ایران

چکیده

سولفور یکی از عناصر موجود در سوخت های فسیلی است که در هنگام احتراق در موتور خودرو به سولفور دی­اکسید که یکی از مهم­ترین آلاینده­های هواست، تبدیل می­شود. در پژوهش حاضر ظرفیت جذب یک ترکیب سولفور­دار ارگانیک از یک مدل سوخت گازوئیل محتوی ppm 300 تیوفن، روی زئولیت x13 اصلاح‌شده با 3% وزنی فلزات مس ارزیابی شد. همچنین تأثیر 3 پارامتر زمان تماس (15، 30، 60، و min 120)، مقدار جاذب (5/0، 1، 5/2 وg  5/3) و دما (25، 40، 50 و °C 60) در یک سیستم ناپیوسته بررسی شد. در ابتدا به­منظور فعال­سازی کاتیون­های سطح جاذب، زئولیت x13 با آب دیونیزه و نمک M 1/0 مس نیترات شسته و پس از آن نانوذرات مس بر روی آن بارگزاری شد. بیش­ترین ظرفیت جذب در مدت‌زمان min 60، با مقدار g 5/2 جاذب و در دمای محیط صورت گرفت و بر اساس آن مقدار تیوفن برای جاذب­های اصلاح‌شده با نانوذرات مس از 300 به ppm 138 رسید. نتایج جذب نشان داد که افزایش بیش از g 5/2 جاذب در راندمان جذب تغییر محسوسی ایجاد نخواهد کرد. در نتیجه مقدار بهینه جاذب در این پژوهش g 5/2 در نظر گرفته شد. علاوه بر این، مطالعات FT-IR،  SEM و N2 physisorption نشان داد که جاذب ساختار منظم خود را پس از بارگذاری نانوذرات حفظ خواهد کرد. در نهایت زئولیت اصلاح‌شده با نانوذرات مس، عملکرد بهتری جهت سولفورزدایی از مدل سوخت گازوئیل از خود نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Performance of Zeolitic Adsorbent Modified with Cu Nanoparticles for Desulfurization of Hydrocarbon Fuel

نویسندگان [English]

  • Bahare Moradi 1
  • Arezoo Ghadi 2
  • Amir Heidari Nasab 3
  • Ehsan Binaeian 4
1 1M.Sc. Student, Science & Research Branch, Islamic Azad University, Tehran, Iran
2 Assist. Professor, Department of Chemical Engineering, Faculty of Engineering, Ayatolah Amoli Branch, Islamic Azad University, Amol, Iran
3 Assoc. Professor, Department of Chemical Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Assist. professor, Department of Chemical Engineering, Faculty of Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
چکیده [English]

Introduction: Sulfur is one of the elements in fossil fuels converted to sulfur dioxide when burned in a car engine, which is one of the most important air pollutants. The release of sulfur in existence petroleum and oil products into the air will lead to a serious environmental crisis. In addition, it has many side effects on human health and other living organisms. Complications such as sore throat and eye irritation and its acidic properties for living organisms are obvious consequences. Air pollution, acid rain, greenhouse effects, and other global environmental crises are due to pollutants such as sulfur in petroleum products and petrochemical industries.
Materials and Methods: In the present study, the adsorption capacity of an organic sulfurized compound from a diesel fuel model containing 300 ppm thiophene was evaluated on zeolite 13x modified with 3% by weight of copper metal. Moreover, the effect of three parameters of contact time (15, 30, 60, and 120 min), the amount of adsorbent (0.5, 1, 2.5, and 3.5 g), and temperature (25, 40, 50, and 60 °C) was evaluated in a batch system. First, in order to activate the adsorbent surface cations, zeolite x13 was washed with deionized water and 0.1 M copper nitrate salt and then copper nanoparticles were loaded on it.
Results: The maximum adsorption capacity achieved in 60 minutes with 2.5 g of adsorbent at ambient temperature; based on which the amount of thiophene for adsorbents modified with copper nanoparticles decreased from 300 to 138 ppm. The adsorption results showed that an increase of more than 2.5 g of adsorbent would not cause a significant change in the adsorption efficiency. As a result, the optimal amount of adsorbent in this study considered as 2.5 g. In other words, the adsorption efficiency in the test performed by zeolite modified with copper nanoparticles after increasing 1 g of adsorbent (from 2.5 to 3.5 g) was less than 1%. In addition, FTIR, SEM, and N2 physisorption studies showed that the adsorbent had a spherical, regular structure that will maintain this structure after nanoparticle loading. Studies have shown that the contact time is an equilibrium variable that this behavior was attributed to the exotherm of the process and its increase after reaching the equilibrium point will no longer have a significant effect on the adsorption capacity. Furthermore, adding 5% by weight of toluene or normal hexane to the cyclohexane and thiophene solution will reduce the removal of thiophene due to the formation of thiophene alkyls on the active sites of the adsorbent and the blockage of the cavities.
Conclusion: The process of adsorption of thiophene from thiophene solution in cyclohexane is physical and reversible, so the adsorbent can be retrievable, which is an extraordinary advantage. Adsorption isotherms were evaluated using common Langmuir, Freundlich, and Temkin models at ambient temperature with a mixing time of 1 hr and an adsorbent of 2.5 g with different amounts of solution. The results were highly consistent with the Freundlich isotherms and physical adsorption. Examination of the thermodynamics of adsorption showed that the reaction is exothermic, so according to Le Chatelier's principle, the progress of the reaction decreases with increasing temperature. Negative entropy also reflects the fact that the degree of freedom at the solid-solution surface decreases during adsorption. Finally, it can be concluded that zeolite modified with copper nanoparticles will show better performance for desulfurization of diesel fuel model.

کلیدواژه‌ها [English]

  • Adsorption
  • Cu nanoparticles
  • Desulfurization
  • Zeolite Modification
Abdulkhani, A. Rasoulzadeh, H. Maraunian, H. and Changlouai, A. (2013). Removal of sulfur compounds from oil fields. The first conference on knowledge development of oil, gas and petrochemical industries, Tehran [In Persian].
AdeliNasab, M. Ranjbar, M. MousavianS, M. Azizipour, H. and Vahabzadeh, B. (2017). Review of structure, application, classification, different methods of synthesis and methods of identification of zeolite nanocrystals, Fujasite nano zeolites (Y, X) and MFI. 4th National Research Conference New in Chemistry and Chemical Engineering, Tehran, Iran [In Persian].
Al Zubaidy, I. A. H., Noora, N. D. Balsam, S., Sana, A. M., Aysha, A. S. and Lamis, A. C. (2013). Adsorption process of sulfur removal from diesel oil using sorbent materials. J. Clean Ener. Technol., 1(1), 66-68, DOI:10.7763/JOCET.2013.V1.16
Asad Sangabi, F., Sangi, M. R. and Bagheri, B. (2016). Study of thermodynamic parameters in adsorption of lead, copper and cadmium metal ions by plant sorbents. Amir Kabir J. Civil Eng., 47(3), 11-18.
 Astruc, D. (2020). Introduction: nanoparticles in catalysis. Chem. Rev., 120, 2, 461–463. DOI: 10.1021/acs.chemrev.8b00696
Caro, J., Noack, M., Kölsch, P. and Schäfer, R. (2000) Zeolite membranes and state of their development and perspective. Micropor. Mesopor. Mater., 38(1), 3-24.
Dasgupta, S., Gupta, P., Aarti, Amar, A. N., Goswami, N., Garg, M. O., Tangstad, E., Vistad, Ø, B., Karlsson, A. and Stöcker, M. (2013). Adsorptive desulfurization of diesel by regenerable nickel based adsorbents. Fuel, 108, 184–189.
Dirar Q. H. and Loughlin K. F. (2013). Intrinsic adsorption properties of CO2 on 5A and 13X zeolite. Adsorpt., 19, 1149–1163.
Ghasemian, M., Prophets, M. and Shariati, S. (2013). Synthesis and identification of new nanoporous adsorbent CMK-1 / SDS-Fe for measurement and removal of PANH compounds with SPE-UV technique in oil, gas, petrochemical industry. Petrol. Res., 23(73), 81-94.
Gholami, R., Ghaemi, D. and Sadeghi, M. (2016). Experimental study of carbon dioxide adsorption on 13X zeolite in a fixed bed reactor. J. Water Separat. Eng., 8(1), 17-24.
Ghorbani, Y. (2013). Sulfur Compounds Removal Methods from Crude Oil. Farayandono, 8(43), 19-39 [In Persian].
Hayyiratul, F., Chong, F. and Mohamed, I. A. (2006). Extractive deep desulfurization of diesel using ion-exchanged zeolites. Chem. Eng. Sci., 61, 2599 – 2608.
Khaled, A. E., Ahmed, E., Amany, O. and Abdelwahab, O. (2009). Removal of direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. J. Hazard. Mater. 165, 100-110.
Lee, K. X. and Valla, J. A. (2017). Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels. Appl. Catal. B: Environ., 201, 359–369.
López, B. A., Berhault, G. and Guevara, L. A. (2017). NiMo catalysts supported on Mn-Al2O3 for dibenzothiophene hydrodesulfurization application. Appl. Catal. B., 213, 28-41.
Méndez, F. J., Franco, L. O. E., Bokhimi, X., Solís, C. D. A. and Escobar, A. K. T. E. (2017). Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. Appl. Catal. B., 219, 479-491.
Oliveira, M., Miranda, A., Barbosa, C., Cavalcante, J., Azevedo, D. and Rodriguez, C. E. (2009). Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag(I), Ni(II) and Zn(II). Fuel, 88, 1885.
Park, J. G., Bhandari1, V.  M., Hyun Ko, C., Han, S. S., Cho, S. H. and Kim, J. N. (2006). Desulfurization of diesel using ion-exchanged zeolites. Chem. Eng. Sci., 61, 2599 – 2608.
Rui, J., Liu, F., Wang, R., Lu, Y. and Yang, X. (2017). Adsorptive desulfurization of model gasoline by using different Zn sources exchanged NaY zeolites. Molecule., 22(2), 305. doi: 10.3390/molecules22020305
Shahadat Hussain, A. H. M. and Tatarchuk, B. J. (2013). Adsorptive desulfurization of jet and diesel fuels using Ag/TiOx–Al2O3 and Ag/TiOx–SiO2 adsorbents. Fuel, 107, 465–473.
Shahbazi, A., Zahedinia, S. and Hashemi, S. H. (2016). Evaluate the performance of Populus nigra sawdust in the removal of methylene blue from aqueous solutions: isotherms, kinetics and thermodynamics studies. Modarres Civil Eng. J., 16(2), 161-172.
Sikarwar, P., Kumar, U. K. A., Gosu, V. and Subbaramaiah, V. (2018). Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash. J. Environ. Chem. Eng., 6(2), 1736-1744.
Sun, M., Chen, W. C., Zhao, L. Wang, X. L., Su, Z. M. (2018). A [email protected] MIL. 101 (Cr)-diatomite composite as catalyst for efficient oxidative desulfurization. Inorg. Chem. Commun., 87, 30-35.
Teymouri, M., Samadi, M. A. R., Vahida, A. and Miranbeigi, A. (2013). Adsorptive desulfurization of low sulfur diesel fuel using palladium containing mesoporous silica synthesized via a novel in-situ approach. Fuel Process. Technol., 116, 257–264.
Yu, Q., Cui, C., Zhang, Q., Chen, J., Li, Y., Sun, J., Li, C., Cui, Q., Yang, C. and Shan, H. (2013). Hierarchical ZSM-11 with intergrowth structures: Synthesis, characterization and catalytic properties. J. Ener. Chem., 22(5), 761-768.
Zhang, D. Liu, W. Q., Liu, Y. A., Etim, U. J., Liu, X. M. and Yan, Z. F. (2017). Pore confinement effect of MoO3/Al2O3 catalyst for deep hydrodesulfurization. Chem. Eng. J., 330, 706-717.