بررسی عددی تأثیر همزمان شیب دیواره کناری و شکل هندسی مخزن بر خصوصیات سیلاب ناشی از شکست سد در حالت بستر خشک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشیار، گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

سدها جزو سازه‌هایی هستند که علیرغم اثرات محیط­زیستی عمدتاً به‌منظور تأمین آب و انرژی ساخته می‌شوند. شکست سد سبب ایجاد جریان عظیمی می‌شود که سیلاب در نواحی پایین‌دست را به‌ دنبال دارد. به همین دلیل تعیین خصوصیات جریان شکست سد از جمله عمق جریان و سرعت انتشار موج از اهمیت بالایی برخوردار است. در این پژوهش تأثیر هم‌زمان شکل هندسی مخزن در پلان و شیب دیواره کناری مخزن بر الگو و چگونگی حرکت موج سیلابی ناشی از شکست سد به‌صورت مدل‌سازی عددی سه‌بعدی با استفاده از نرم‌افزار Flow3D انجام شد. بدین منظور از چهار شکل مختلف مخزن در پلان شامل مخزن عریض، ذوزنقه‌ای، L شکل و طویل با شیب‌های دیواره کناری 30، 45، 60 و °90 و با در نظر گرفتن بستر خشک پائین‌دست استفاده شد. نتایج حاصل از مدل‌سازی سه‌بعدی عددی بیانگر این بود که در تمامی مخازن موردمطالعه با کاهش شیب کناری دیواره مخزن، نوسانات سطح آب به دلیل تشکیل دو موج منفی که بر روی شیب دیواره مخازن گسترش یافته و در محل خط مرکزی مخازن به هم رسیده، افزایش یافته است. همچنین تأثیر شکل هندسی مخازن عریض و ذوزنقه‌ای بر روی خصوصیات جریان ناشی از شکست سد، بیشتر از تأثیر کاهش شیب دیواره کناری این مخازن بوده است. درحالی‌که در مخازن طویل و L شکل، کاهش شیب دیواره کناری این مخازن تأثیر فراوانی بر روی خصوصیات جریان ناشی از شکست سد دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of Simultaneous Effect of the Sidewall Slope and the Geometric Shape of Reservoir on the Flood Characteristics Caused by Dam Break on Dry Bed Condition

نویسندگان [English]

  • Alireza Asadpour Ardabil 1
  • Atabak Feizi 2
1 M.Sc. Alumni, Department of Civil Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
2 Assoc. Professor, Department of Civil Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Dams are structures that, despite environmental impacts, are built primarily to provide water and energy. The failure of the dam creates a huge current that follows the flood in the downstream areas. For this reason, determining the characteristics of the dam failure current, including the depth of flow and the speed of wave propagation, is of great importance. In this study, the simultaneous effect of the geometric shape of the reservoir on the plan and slope of the sidewall of the reservoir on the pattern and how the flood wave caused by the failure of the dam was performed in a three-dimensional numerical modeling using Flow3D software. For this purpose, four different reservoir shapes were used in the plan, including a wide, trapezoidal, L-shaped and long reservoir with sidewall slopes of 30, 45, 60 and 90 °, taking into account the downstream dry bed. The results of three-dimensional numerical modeling showed that in all studied reservoirs, by decreasing the lateral slope of the reservoir wall, water level fluctuations increased due to the formation of two negative waves that spread on the slope of the reservoir wall and reached the central line of the reservoirs. Moreover, the effect of the geometric shape of wide and trapezoidal reservoirs on the flow characteristics due to dam failure was greater than the effect of reducing the slope of the sidewall of these reservoirs. While in long and L-shaped reservoirs, reducing the slope of the sidewall of these tanks has a great effect on the flow characteristics due to dam failure.

کلیدواژه‌ها [English]

  • Dam Break
  • Reservoir Geometry
  • Sidewall Slope of Reservoir
  • 3D Numerical Simulation
Amini, A., Arya, A., Eghbalzadeh, A., Javan, M. (2017). Peak flood estimation under overtopping and piping conditions at Vahdat Dam, Kurdistan Iran Arab. J. Geosci., 10(6), 127.
Aureli, F., Dazzi, S., Maranzoni, A., Mignosa, P. and Vacondio, R. (2015). Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure. Adv. Water Resour., 76, 29–42. DOI:10.1016/j.advwatres.2014.11.009
Costa, J. E. (1985) Floods from dam failures. US Geological Survey, Open-File Rep. No. 85-560, Denver, 54 pp. DOI: 10.3133/ofr85560
Costabile, P., Macchione, F., Natale, L. and Petaccia, G. (2015). Comparison of scenarios with and without bridges and analysis of backwater effect in 1-D and 2-D river flood modeling. Computer Model. Eng. Sci., 109-110(2), 81-103. DOI:10.3970/cmes.2015.109.081
Feizi Khankandi, A., Tahershamsi, A. and Soares-Frazão, S. (2012). Experimental investigation of reservoir geometry effect on dam-break flow. J. Hydraul. Res., 50(4), 376–387. DOI:10.1080/00221686.2012.690974
Feizi, A. (2018). Hydrodynamic study of the flows caused by dam break around downstream obstacles. Open Civil Eng. J., 12(1), 225–238. DOI: 10.2174/1874149501812010225
FLOW 3D User’s Manual. (2011). Version 10.0. Flow Science Inc.
Froehlich, D. C. (1996). Peak outflow from breached embankment dam. J. Water Resour. Plan. Manag., 122(4), 317-319. DOI: 10.1061/(asce)0733-9496(1996)122:4(317)
Hooshyaripor, F., Tahershamsi, A. and Razi, S. (2017). Dam break flood wave under different reservoir’s capacities and lengths. Sādhanā, 42(9), 1557–1569. DOI: 10.1007/s12046-017-0693-x
Issakhov, A. and Imanberdiyeva, M. (2020). Numerical study of the movement of water surface of dam break flow by VOF methods for various obstacles. Int. J. Nonlinear Sci. Numer. Simul., 21(5), 475–500. DOI: 10.1515/ijnsns-2018-0278
Issakhov, A., Zhandaulet, Y. and Nogaeva, A. (2018). Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int. J. Multiphase Flow, 109, 191–206. DOI:10.1016/j.ijmultiphaseflow.2018.08.003
Javadian, M., Kaveh, R. and Mahmoodinasab, F. (2016). A study on experimental model of dam break problem and comparison experimental results with analytical solution of Saint-Venant equations. Int. J. Adv. Biotechnol. Res., 7, 1239-1245.
Kocaman, S., Güzel, H., Evangelista, S., Ozmen-Cagatay, H. and Viccione, G. (2020). Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel. Water, 12(4), 1124. DOI: 10.3390/w12041124
MacDonald, T. C. and Langridge-Monopolis, J. (1984). Breaching characteristics of dam failures. J. Hydraul. Eng., 110(5), 567–586.
Miraki, A., Bahrami, J. and Amini, A. (2020). Investigation of flood characteristics due to dam failure in the narrow section of the Rive. Environ. Water Eng., 6(4), 388-401. DOI: 10.22034/jewe.2020.245577.1411 [In Persian].
Monteiro, L. R., Lucchese, L. V. and Schettini, C. E. B. (2019). Comparison between hydrostatic and total pressure simulations of dam-break flows. J. Hydraul. Res., 58(5), 725–737.  DOI: 10.1080/00221686.2019.1671509.
Najar, M. and Gul, A. (2022). Investigating the Influence of Dam-Breach Parameters on Dam-Break Connected Flood Hydrograph. Teknik Dergi. 796334. DOI: 10.18400/tekderg.
Ozmen-Cagatay, H. and Kocaman, S. (2011). Dam-break flow in the presence of obstacle: experiment and CFD simulation. Eng. Appl. Comput. Fluid Mechanics, 5(4), 541–552. DOI:10.1080/19942060.2011.11015393
Pilotti, M., Tomirotti, M., Valerio, G. and Bacchi, B. (2010). Simplified method for the characterization of the hydrograph following a sudden partial dam break. J. Hydraul. Eng., 136(10), 693-704. DOI: 10.1061/(asce)hy.1943-7900.0000231
Singh, K. P. and Snorrason, A. (1984). Sensitivity of outflow peaks and flood stages to the selection of dam breach parameters and simulation models. J. Hydrol. Eng., 68(1-4):295–310. DOI: 10.1016/0022-1694(84)90217-8
Soares-Frazão, S. (2007). Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res., 45(sup1), 19–26. DOI:10.1080/00221686.2007.9521829
Soares-Frazão, S. and Zech, Y. (2002). Dam break in channels with 90° bend. J. Hydraul. Eng., 128(11), 956–968. DOI: 10.1061/(asce)0733-9429(2002)128:11(956)
Soares-Frazão, S. and Zech, Y. (2007). Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res., 45(sup1), 27–36. DOI:10.1080/00221686.2007.9521830
Tahershamsi, A., Hooshyaripor, F., and Razi, S. (2017). Reservoir’s geometry impact of three dimensions on peak-discharge of dam failure flash flood. Scientia Iranica, 25(4), 1931–1942. DOI:10.24200/sci.2017.4467
Toro, E. F. (2001). Shock capturing methods for free flows. John Wiley and Sons Publications, USA. 326 pp.
Wrachien, D. and Mambretti, S. (2009). Dam-break problems, solutions and case studies. WIT Transactions on State-of-the-art in Science and Engineering Publications, UK. 368 pp.