نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکترای، گروه محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاداسلامی واحد تبریز، تبریز، ایران

2 استادیار، گروه محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

3 استادیار، گروه شیمی، دانشکده علوم پایه، دانشگاه ازاد اسلامی واحد تبریز، تبریز، ایران

چکیده

فرآیند اکسیداسیون پیشرفته با استفاده از ذرات آهن صفر ظرفیتی و رادیکال­­های فعال­شده توسط سولفات فرابنفش برای حذف فنل از فاضلاب مصنوعی به­عنوان یک روش بسیار کارآمد شناخته می­شود. هدف از این مطالعه تعیین تغییرات pH و سنتیک در فرآیند ZVI/PS/UV برای حذف فنل از فاضلاب بود. هر آزمایش در یک راکتور پلکسی گلاس مجهز به دو منبع تابش فرابنفش (nm 254) انجام شد. ویژگی­های آهن صفر ظرفیتی توسط آنالیزهای XRD، SEM، EDAS و BET تعیین شد. نتایج نشان داد که سطح ویژه آهن صفر ظرفیت m2/g 43/4 بود. اندازه متوسط ​​نانوذرات آهن nm 48/35 بود. تحلیل SEM نشان داد که بلورها دارای ساختار کریستالی مناسبی هستند. نتایج جذب نشان داد که در pH اولیه 6، بیش­ترین میزان حذف فنل 85/3±87/94% به­دست آمد. مطالعه سینتیکی نشان داد که فرآیند ZVI/PS/UV برای حذف فنل از مرتبه دوم پیروی می کند و pH در حذف فنل از فاضلاب موثر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of the Effect of pH and Kinetic Changes in the Combined Process of ZVI/PS/UV in Order to Remove Phenol from Wastewater

نویسندگان [English]

  • Mehdi Salehzadeh 1
  • Arezoo Nejaei 2
  • Mohammad Ebrahim Ramazani 2
  • Parvin Alizadeh Eslami 3
  • Mohammad Shokri 3

1 PhD Scholar, Department of Environment, Faculty of Agriculture and Natural Resources, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Assist. Professor, Department of Environment, Faculty of Agriculture and Natural Resources, Tabriz Branch, Islamic Azad University, Tabriz, Iran

3 Assist. Professor, Department of Chemistry, Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran

چکیده [English]

The advanced oxidation process using zero-valent iron particles and radicals activated by ultraviolet sulfate to remove phenol from synthetic wastewater is known as a highly efficient method. The aim of this study was to investigate the pH and kintic changes in ZVI/PS/UV process for the removal of phenol from wastewater. Each experiment was performed in a Plexiglas reactor equipped with 2 sources of ultraviolet radiation (254 nm). The characterization of zero valent iron was determined by XRD, SEM, EDAS, and BET analyzes. The results showed that the specific surface area of ​​zero valent iron was 4.43 m2/g. The average size of iron nanoparticles was 35.48 nm. SEM analysis showed that the crystals had a suitable crystalline structure. The adsorption results showed that at an initial pH of 6, the highest phenol removal rate of 94.87%±3.85 was obtained. The kinetic study showed that the ZVI/PS/UV process for phenol removal follows  second order and pH is effective in removing phenol from wastewater.

کلیدواژه‌ها [English]

  • Advanced Oxidation
  • Persulfate
  • Phenol
  • Zero-Valent Iron
Ai, Z., Yang, P. and Lu, X. (2005). Degradation of 4-chlorophenol by a microwave assisted photocatalysis method. J. Hazard. Mter., 124, 147-152.
Association, A. P. H. (2017). American water works association and water environment federation. Phenols. 5530 D. Direct photometric method. Standard methods for the examination of water and wastewater.23RD Edition. 5-39.
Busca, G.. Berardinelli, S., Resini, C. and Arrighi, L. (2008). Technologies for the removal of phenol from fluid streams: a short review of recent developments. J. Hazard. Mater., 160, 265-288.
Chen, L., Peng, X., Liu, J., Li, J. and Wu, F. )2012(. Decolorization of Orange II in aqueous solution by an Fe (II)/sulfite system: replacement of persulfate. Indust. Eng. Chem. Res., 51, 13632-13638.
Dalvand, A., Gholami, M., Joneidi, A. and Mahmoodi, N. )2009(. Investigation of electrochemical coagulation process efficiency for removal of reactive red 198 from colored wastewater. J. Color Sci. Technol., 3, 97-105.
Eglal, M. M. and Ramamurthy. A. S. (2014). Nanofer ZVI: morphology. particle characteristics. kinetics. and applications. J. Nanomater., 2014. DOI: 10.1155/2014/152824
Fierro, V., Torné-Fernández, V., Montané, D. and Celzard, A. )2008. Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor. Mesopor. Mater., 111, 276-284.
Fu, Y., Wu, G., Geng, J., Li, J., Li, S. and Ren, H. (2019). Kinetics and modeling of artificial sweeteners degradation in wastewater by the UV/persulfate process. Water Res., 150, 12-20.
Gao, Y. Q., Gao, N. Y., Deng, Y., Yang, Y. Q. and Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem. Eng. J., 195, 248-253.
Ghaneian, M. and Ghanizadeh, G. (2009). Application of enzymatic polymerization process for the removal of phenol from synthetic wastewater. Iran. J. Health Environ., 2(1), 46-55 [In Persian].
Guan, X., Sun, Y., Qin, H., Li, J., Lo, I. M., He, D. and Dong.H. (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res., 75, 224-248.
Hameed, B. and Rahman, A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater., 160, 576-581.
Heath, J. and Taylor, N. (2015). Energy dispersive spectroscopy. Essent. Knowl. Briefings. 32.
Hemmati, M., Nazari, N., Hemmati, A. and Shirazian, S. (2015). Phenol removal from wastewater by means of nanoporous membrane contactors. J. Indust. Eng. Chem., 21, 1410-1416.
Jafari, K., Heidari, M. and Rahmanian, O. (2018). Wastewater treatment for Amoxicillin removal using magnetic adsorbent synthesized by ultrasound process. Ultrason. Sonochem., 45, 248-256.
Kamani, H. (2018). Investigation of magnesium oxide nanoparticles efficiency in phenol removal from aquatic solution. Mag., 3, 267.
Lau, T. K., Chu, W. and Graham, N. J. (2007). The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization. Environ.  Sci. Technol., 41. 613-619.
Lazo-Cannata, J. C., Nieto-Márquez, A., Jacoby, A., Paredes-Doig, A. L., Romero, A., Sun-Kou, M. R. and Valverde, J. L. (2011). Adsorption of phenol and nitrophenols by carbon nanospheres: Effect of pH and ionic strength. Separ. Purif. Technol., 80, 217-224.
Liang, C., Wang, Z. S. and Bruell, C. J. )2007(. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 66, 106-113.
Lopes, P. R., Montagnolli, R. N. and Bidoia, E. D. (2011). Analytical methods in photoelectrochemical treatment of phenol. J. Brazil. Chem. Soc., 22, 1758-1764.
Manojlovic, D., Ostojic, D., Obradovic, B., Kuraica, M. M., Krsmanovic, V. and Puric, J. (2007). Removal of phenol and chlorophenols from water by new ozone generator. Desal., 213, 116-122.
Mohan, D., Sarswat, A. Singh, V. K., Alexandre-Franco, M. and Pittman, C. U. (2011). Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J., 172, 1111-1125.
Movahedyan, H., Mohammadi, A. S. and Assadi, A. (2009). Comparison of different advanced oxidation processes degrading p-chlorophenol in aqueous solution. J. Environ. Health Sci. Eng., 6, 153-160.
Nguyen, T. H. A. and Oh, S. Y. (2019). Biochar‐mediated oxidation of phenol by persulfate activated with zero‐valent iron. J. Chem. Technol. Biotechnol., 94, 3932-3940.
Nickheslat, A., Amin, M. M., Izanloo, H., Fatehizadeh, A. and Mousavi, S. M. (2013). Phenol photocatalytic degradation by advanced oxidation process under ultraviolet radiation using titanium dioxide. J. Environ. Public Health, 2013, DOI: 10.1155/2013/815310
Oturan, N., Wu, J., Zhang, H. Sharma, V. K. and Oturan, M. A. (2013). Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Appl. Catal. B. Environ., 140, 92-97.
Rahmani, A. R., Asgari, G., Barjesteh Asgari, F., Hedayati Kamran, E. and Alijani, F. (2011). Investigation of phenol removal from aqueous solutions using copper-impregnated pumice. Avicenna J. Clinic. Med., 17, 1-18.
Rajkumar, D. and Palanivelu, K. (2003). Electrochemical degradation of cresols for wastewater treatment. Indust. Eng. Chem. Res., 42, 1833-1839.
Ramos, A., Gomez, M. Hontoria, E. and Gonzalez-Lopez, J. )2007(. Biological nitrogen and phenol removal from saline industrial wastewater by submerged fixed-film reactor. J. Hazard. Mater., 142, 175-183.
Saeed, M. and Ilyas, M. (2013). Oxidative removal of phenol from water catalyzed by nickel hydroxide. Appl. Catal. B. Environ., 129, 247-254
Sánchez-Polo, M., Ocampo-Pérez, R., Rivera-Utrilla, J. and Mota, A. J. )2013(. Comparative study of the photodegradation of bisphenol A by HO, SO4 and CO3/HCO3 radicals in aqueous phase. Sci. Total Environ., 463, 423-431.
Secula, M. S., Cagnon, B., De Oliveira, T. F., Chedeville, O. and Fauduet, H. (2012). Removal of acid dye from aqueous solutions by electrocoagulation/GAC adsorption coupling: Kinetics and electrical operating costs. J.  Taiwan Inst. Chem. Eng., 43, 767-775.
Shiying, Y., Ping, W., Xin, Y., Guang, W., Zhang, W. and Liang, S. (2009). A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. J. Environ. Sci., 21, 1175-1180
Sun, D. D., Yan, X. X. and Xue, W. P. (2013). Oxidative degradation of dimethyl phthalate (DMP) by persulfate catalyzed by Ag+ combined with microwave irradiation. Adv. Mater. Res., 610-613, 1209-1212.
Suresh, S., Srivastava, V. C. and Mishra, I. M. (2011). Adsorptive removal of phenol from binary aqueous solution with aniline and 4-nitrophenol by granular activated carbon. Chem. Eng. J., 171, 997-1003.
Tian, J., Wu, C., Yu, H. Gao, S., Li, G., Cui, F. and Qu, F. (2018). Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res., 132, 190-199.
Veeresh, G. S., Kumar, P. and Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Res., 39. 154-170.
Xie, P., Guo, Y., Chen, Y., Wang, Z., Shang, R., Wang, S., Ding, J., Wan, Y., Jiang, W. and Ma, J. (2017). Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants. Chem. Eng. J., 314, 240-248.
Xu, P. , Zeng, G. M. , Huang, D. L. , Feng, C. L. , Hu, S. , Zhao, M. H. , Lai, C. , Wei, Z. , Huang, C. and Xie, G. X. )2012(. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ., 424,1-10.
Yousef, R. I., El-Eswed, B. and Ala’a, H. )2011(. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem. Eng. J., 171, 1143-1149.
Yamaguchi, R., Kurosu, S., Suzuki, M. and Kawase, Y. (2018). Hydroxyl radical generation by zero-valent iron/Cu (ZVI/Cu) bimetallic catalyst in wastewater treatment: Heterogeneous Fenton/Fenton-like reactions by Fenton reagents formed in-situ under oxic conditions. Chem. Eng. J., 334, 1537-1549.
Zhang, C., Li, J., Cheng, F. and Liu, Y. (2018). Enhanced phenol removal in an innovative lignite activated coke-assisted biological process. Bioresour. Technol., 260, 357- 363.
Zhang, Y., Zhang, Q. and Hong, J. (2017).  Sulfate radical degradation of acetaminophen by novel iron–copper bimetallic oxidation catalyzed by persulfate: mechanism and degradation pathways. Appl. Surf. Sci., 422, 443-451.
Zhang, F., Wei, C., Hu, Y. and Wu, H. (2015). Zinc ferrite catalysts for ozonation of aqueous organic contaminants: phenol and bio-treated coking wastewater. Separ. Purif. Technol., 156, 625-635.