بررسی میزان تاثیرتغییرات pH و سینتیک واکنش در فرایند ترکیبی ZVI/PS/UV بمنظورحذف فنل از فاضلاب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکترای، گروه محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاداسلامی واحد تبریز، تبریز، ایران

2 استادیار، گروه محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

3 استادیار، گروه شیمی، دانشکده علوم پایه، دانشگاه ازاد اسلامی واحد تبریز، تبریز، ایران

چکیده

در بین آلاینده­ های آلی، فنل و مشتقات آن متداول ­ترین آلاینده ­هایی هستند که وجود آن‌ها در غلظت­ های کم باعث عدم استفاده از منابع آبی و آلودگی آن می­ شود. روش ­های مختلفی برای حذف فنل از فاضلاب و محلول­ های آبی استفاده شده است. فرایند اکسیداسیون پیشرفته با استفاده از ذرات آهن صفر ظرفیتی و رادیکال سولفات فعال‌شده با نور ماوراءبنفش در حذف فنل از فاضلاب مصنوعی به‌عنوان یک روش پربازده شناخته‌شده است. هدف از این پژوهش بررسی تغییرات pH و شناخت ریخت­شناسی ذرات جاذب آهن صفر ظرفیتی به‌عنوان پارامتر اصلی فرآیند و سینتیک واکنش در افزایش کارایی آن بود. آزمایش‌ها در یک راکتور پلکسی گلاس  l 3 مجهز به 2 منبع تابش اشعه ماوراءبنفش (nm 254) انجام شد. تأثیر متغیرهایی مانند pH اولیه، مقدار"آهن صفر ظرفیتی"، مقدار پرسولفات، غلظت فنل و زمان تماس موردبررسی قرار گرفت. تعیین ویژگی آهن صفر ظریتی توسط آنلیزهای XRD، SEM، EDAS، و BET تعیین شد. نتایج تعیین ویژگی نشان داد که سطح ویژه آهن صفر ظرفیتی m2/g 43/4 بود. متوسط اندازه نانوذرات آهن nm 48/35 محاسبه شد. نتایج EDAS نشان داد که ترکیبات آهن و اکسیژن با درصدهای 12/96 و 88/3 در نمونه آهن صفر ظرفیتی وجود داشت. از لحاظ ریخت­شناسی، آنالیز SEM نشان داد که بلوره­ها دارای ساختارکریستالی شکل مناسب بودند. نتایج جذب نشان داد که در pH اولیه 6، بالاترین میزان حذف فنل به مقدار 85/3 ± 87/94% حاصل شد. بررسی سینتیک­های درجه صفر، یک و دو برای فرایند ZVI/UV/PS نشان داد که فرایند تلفیقی ذکرشده جهت حذف فنل از درجه ‌دو تبعیت نموده و pH در حذف فنل از فاضلاب مؤثر می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Effect of pH and Kinetic Changes in the Combined Process of ZVI/PS/UV in Order to Remove Phenol from Wastewater

نویسندگان [English]

  • Mehdi Salehzadeh 1
  • Arezoo Nejaei 2
  • Mohammad Ebrahim Ramazani 2
  • Parvin Alizadeh Eslami 3
  • Mohammad Shokri 3
1 PhD Scholar, Department of Environment, Faculty of Agriculture and Natural Resources, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 Assist. Professor, Department of Environment, Faculty of Agriculture and Natural Resources, Tabriz Branch, Islamic Azad University, Tabriz, Iran
3 Assist. Professor, Department of Chemistry, Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
چکیده [English]

Extended Abstract
Introduction: Nowadays, pollution of water resources with various organic and inorganic pollutants is the most important issue and cause of concern for water purification officials. Among organic pollutants, phenol and its derivatives are the most common pollutants that exist. They in low concentrations prevent the use of water resources and its pollution. Various methods have been used to remove phenol from wastewater and aqueous solutions. The advanced oxidation process using zero-valent iron particles and radical-activated sulfate with ultraviolet light in the removal of phenol from synthetic wastewater is known as a highly efficient method. The aim of this study was to investigate the changes in pH and morphology of zvi adsorbent particles as the main parameter of the process and the reaction kinetics in increasing its efficiency.
Materials and Methods: The experiments were performed in a 3-liter Plexiglas reactor equipped with two sources of ultraviolet radiation (254 nm). The effects of variables such as initial pH, amount of ZVI, amount of persulfate, phenol concentration and contact time were investigated.
Results: The results showed that at the initial pH of 6, the highest rate of phenol removal was obtained. Examination of zero, one and two order kinetics for ZVI/UV/PS process showed that the combined process mentioned to remove phenol follows the second order. The surface area of ZVI adsorbent determined by BET was 4.43 m2/g. In addition, the results of zero-valent iron particle analysis showed a crystal structure. In terms of minerals, iron and oxygen compounds with 96.12 and 3.88 percent were present in ZVI sample.Morphologically, SEM analysis showed that the crystals had a suitable crystalline structure.The adsorption results showed that at an initial pH of 6, the highest phenol removal rate of 94.87± 3.85 was obtained.
Conclusion: Examination of zero-, one- and two-degree kinetics for ZVI/UV/PS process showed that the mentioned integrated process for phenol removal followed grade two and pH is efficient in the removal of pheon from wastewater.

کلیدواژه‌ها [English]

  • Advanced oxidation
  • Persulfate
  • Phenol
  • Zero-valent iron
Ai, Z., Yang, P. and Lu, X. (2005). Degradation of 4-chlorophenol by a microwave assisted photocatalysis method. J. Hazard. Mter., 124, 147-152.
Association, A. P. H. (2017). American water works association and water environment federation. Phenols. 5530 D. Direct photometric method. Standard methods for the examination of water and wastewater.23RD Edition. 5-39.
Busca, G.. Berardinelli, S., Resini, C. and Arrighi, L. (2008). Technologies for the removal of phenol from fluid streams: a short review of recent developments. J. Hazard. Mater., 160, 265-288.
Chen, L., Peng, X., Liu, J., Li, J. and Wu, F. )2012(. Decolorization of Orange II in aqueous solution by an Fe (II)/sulfite system: replacement of persulfate. Indust. Eng. Chem. Res., 51, 13632-13638.
Dalvand, A., Gholami, M., Joneidi, A. and Mahmoodi, N. )2009(. Investigation of electrochemical coagulation process efficiency for removal of reactive red 198 from colored wastewater. J. Color Sci. Technol., 3, 97-105.
Eglal, M. M. and Ramamurthy. A. S. (2014). Nanofer ZVI: morphology. particle characteristics. kinetics. and applications. J. Nanomater., 2014. DOI: 10.1155/2014/152824
Fierro, V., Torné-Fernández, V., Montané, D. and Celzard, A. )2008. Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor. Mesopor. Mater., 111, 276-284.
Fu, Y., Wu, G., Geng, J., Li, J., Li, S. and Ren, H. (2019). Kinetics and modeling of artificial sweeteners degradation in wastewater by the UV/persulfate process. Water Res., 150, 12-20.
Gao, Y. Q., Gao, N. Y., Deng, Y., Yang, Y. Q. and Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem. Eng. J., 195, 248-253.
Ghaneian, M. and Ghanizadeh, G. (2009). Application of enzymatic polymerization process for the removal of phenol from synthetic wastewater. Iran. J. Health Environ., 2(1), 46-55 [In Persian].
Guan, X., Sun, Y., Qin, H., Li, J., Lo, I. M., He, D. and Dong.H. (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res., 75, 224-248.
Hameed, B. and Rahman, A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater., 160, 576-581.
Heath, J. and Taylor, N. (2015). Energy dispersive spectroscopy. Essent. Knowl. Briefings. 32.
Hemmati, M., Nazari, N., Hemmati, A. and Shirazian, S. (2015). Phenol removal from wastewater by means of nanoporous membrane contactors. J. Indust. Eng. Chem., 21, 1410-1416.
Jafari, K., Heidari, M. and Rahmanian, O. (2018). Wastewater treatment for Amoxicillin removal using magnetic adsorbent synthesized by ultrasound process. Ultrason. Sonochem., 45, 248-256.
Kamani, H. (2018). Investigation of magnesium oxide nanoparticles efficiency in phenol removal from aquatic solution. Mag., 3, 267.
Lau, T. K., Chu, W. and Graham, N. J. (2007). The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization. Environ.  Sci. Technol., 41. 613-619.
Lazo-Cannata, J. C., Nieto-Márquez, A., Jacoby, A., Paredes-Doig, A. L., Romero, A., Sun-Kou, M. R. and Valverde, J. L. (2011). Adsorption of phenol and nitrophenols by carbon nanospheres: Effect of pH and ionic strength. Separ. Purif. Technol., 80, 217-224.
Liang, C., Wang, Z. S. and Bruell, C. J. )2007(. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 66, 106-113.
Lopes, P. R., Montagnolli, R. N. and Bidoia, E. D. (2011). Analytical methods in photoelectrochemical treatment of phenol. J. Brazil. Chem. Soc., 22, 1758-1764.
Manojlovic, D., Ostojic, D., Obradovic, B., Kuraica, M. M., Krsmanovic, V. and Puric, J. (2007). Removal of phenol and chlorophenols from water by new ozone generator. Desal., 213, 116-122.
Mohan, D., Sarswat, A. Singh, V. K., Alexandre-Franco, M. and Pittman, C. U. (2011). Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J., 172, 1111-1125.
Movahedyan, H., Mohammadi, A. S. and Assadi, A. (2009). Comparison of different advanced oxidation processes degrading p-chlorophenol in aqueous solution. J. Environ. Health Sci. Eng., 6, 153-160.
Nguyen, T. H. A. and Oh, S. Y. (2019). Biochar‐mediated oxidation of phenol by persulfate activated with zero‐valent iron. J. Chem. Technol. Biotechnol., 94, 3932-3940.
Nickheslat, A., Amin, M. M., Izanloo, H., Fatehizadeh, A. and Mousavi, S. M. (2013). Phenol photocatalytic degradation by advanced oxidation process under ultraviolet radiation using titanium dioxide. J. Environ. Public Health, 2013, DOI: 10.1155/2013/815310
Oturan, N., Wu, J., Zhang, H. Sharma, V. K. and Oturan, M. A. (2013). Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Appl. Catal. B. Environ., 140, 92-97.
Rahmani, A. R., Asgari, G., Barjesteh Asgari, F., Hedayati Kamran, E. and Alijani, F. (2011). Investigation of phenol removal from aqueous solutions using copper-impregnated pumice. Avicenna J. Clinic. Med., 17, 1-18.
Rajkumar, D. and Palanivelu, K. (2003). Electrochemical degradation of cresols for wastewater treatment. Indust. Eng. Chem. Res., 42, 1833-1839.
Ramos, A., Gomez, M. Hontoria, E. and Gonzalez-Lopez, J. )2007(. Biological nitrogen and phenol removal from saline industrial wastewater by submerged fixed-film reactor. J. Hazard. Mater., 142, 175-183.
Saeed, M. and Ilyas, M. (2013). Oxidative removal of phenol from water catalyzed by nickel hydroxide. Appl. Catal. B. Environ., 129, 247-254
Sánchez-Polo, M., Ocampo-Pérez, R., Rivera-Utrilla, J. and Mota, A. J. )2013(. Comparative study of the photodegradation of bisphenol A by HO, SO4 and CO3/HCO3 radicals in aqueous phase. Sci. Total Environ., 463, 423-431.
Secula, M. S., Cagnon, B., De Oliveira, T. F., Chedeville, O. and Fauduet, H. (2012). Removal of acid dye from aqueous solutions by electrocoagulation/GAC adsorption coupling: Kinetics and electrical operating costs. J.  Taiwan Inst. Chem. Eng., 43, 767-775.
Shiying, Y., Ping, W., Xin, Y., Guang, W., Zhang, W. and Liang, S. (2009). A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. J. Environ. Sci., 21, 1175-1180
Sun, D. D., Yan, X. X. and Xue, W. P. (2013). Oxidative degradation of dimethyl phthalate (DMP) by persulfate catalyzed by Ag+ combined with microwave irradiation. Adv. Mater. Res., 610-613, 1209-1212.
Suresh, S., Srivastava, V. C. and Mishra, I. M. (2011). Adsorptive removal of phenol from binary aqueous solution with aniline and 4-nitrophenol by granular activated carbon. Chem. Eng. J., 171, 997-1003.
Tian, J., Wu, C., Yu, H. Gao, S., Li, G., Cui, F. and Qu, F. (2018). Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res., 132, 190-199.
Veeresh, G. S., Kumar, P. and Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Res., 39. 154-170.
Xie, P., Guo, Y., Chen, Y., Wang, Z., Shang, R., Wang, S., Ding, J., Wan, Y., Jiang, W. and Ma, J. (2017). Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants. Chem. Eng. J., 314, 240-248.
Xu, P. , Zeng, G. M. , Huang, D. L. , Feng, C. L. , Hu, S. , Zhao, M. H. , Lai, C. , Wei, Z. , Huang, C. and Xie, G. X. )2012(. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ., 424,1-10.
Yousef, R. I., El-Eswed, B. and Ala’a, H. )2011(. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem. Eng. J., 171, 1143-1149.
Yamaguchi, R., Kurosu, S., Suzuki, M. and Kawase, Y. (2018). Hydroxyl radical generation by zero-valent iron/Cu (ZVI/Cu) bimetallic catalyst in wastewater treatment: Heterogeneous Fenton/Fenton-like reactions by Fenton reagents formed in-situ under oxic conditions. Chem. Eng. J., 334, 1537-1549.
Zhang, C., Li, J., Cheng, F. and Liu, Y. (2018). Enhanced phenol removal in an innovative lignite activated coke-assisted biological process. Bioresour. Technol., 260, 357- 363.
Zhang, Y., Zhang, Q. and Hong, J. (2017).  Sulfate radical degradation of acetaminophen by novel iron–copper bimetallic oxidation catalyzed by persulfate: mechanism and degradation pathways. Appl. Surf. Sci., 422, 443-451.
Zhang, F., Wei, C., Hu, Y. and Wu, H. (2015). Zinc ferrite catalysts for ozonation of aqueous organic contaminants: phenol and bio-treated coking wastewater. Separ. Purif. Technol., 156, 625-635.