طراحی بهینه آبشکن‌های رودخانه‌ای با استفاده از مدل‌های فراابتکاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

تاکنون پژوهشگران متعددی مطالعات زیادی در رابطه با پارامترهای مؤثر در طراحی آب‌شکن‌های رودخانه­ای انجام داده­اند که بیش­تر پایه آزمایشگاهی داشته و برای شرایط محدودی کاربرد دارند. ازاین‌رو در پژوهش حاضر با استفاده از دو الگوریتم فراابتکاری بهینه‌ساز شامل الگوریتم گرگ خاکستری (GWO) و الگوریتم انتخابات (EA) به طراحی بهینه سازه­ای و ارائه نتایج تحلیلی آب‌شکن‌های رودخانه زنجان­رود (ازنظر طول و فاصله بین دو آب‌شکن متوالی) پرداخته شد. نتایج با روش شبکه عصبی مصنوعی (ANN) مقایسه شدند. داده­های مورداستفاده به­صورت تصادفی به دو بخش 75% برای واسنجی و 25% برای آزمون تفکیک شدند. عملکرد روش­های پیشنهادی با استفاده از شاخص ­های آماری ضریب تبیین (R2)، جذر میانگین مربعات خطا (RMSE) و میانگین قدر مطلق خطا (MAE) ارزیابی شد. طول بهینه آب‌شکن‌ها با توجه به نتایج حاصل از الگوریتم‌های GWO و EA، به­ترتیب برابر با 26/19 و m 12/18 به­ دست آمد. همچنین فاصله بهینه بین دو آب‌شکن متوالی در بهینه­ترین حالت برابر با m 56/52 محاسبه شد. به­‌طور متوسط با توجه به نتایج حاصل از بهینه­سازی انجام‌شده، به­ ترتیب باید افزایش 4/28 و 35% در طول و فاصله بین دو آب‌شکن متوالی در رودخانه زنجان­رود انجام شود تا در محدوده معیار طراحی توصیه شده قرار گیرد. هم‌چنین بر اساس شاخص ­های آماری، نتایج حاصل از الگوریتم GWO در مقایسه با دو روش الگوریتم EA و شبکه عصبی مصنوعی (ANN)، با کسب مقادیر 96/0 R2=، 022/0 RMSE= و 016/0 MAE= از کارایی بالاتری برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Design of River Groynes using Meta-Heuristic Models

نویسندگان [English]

  • Somayeh Emami 1
  • Javad Parsa 2
1 PhD Scholar, Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 Assist. Professor, Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

So far, several researchers have conducted many studies on the effective parameters in the design of river breakwaters, which are mostly laboratory-based and are used for limited conditions. Therefore, the aim of the present studywas to optimal design of structure and to present analytical results of Zanjanrood river breakwaters (in terms of length and distance between two consecutive breakwaters) using two optimization meta-heuristic algorithms including the Gray Wolf Algorithm (GWO) and the Election Algorithm (EA). The results were compared with artificial neural network (ANN) method. The data used were randomly divided into two parts: 75% for calibration and 25% for test. The performance of the proposed methods was evaluated using the statistical indicators of coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE). The optimal length of the breakwaters according to the results of GWO and EA algorithms was 19.26 and 18.12 m, respectively. Moreover, the optimal distance between two consecutive breakwaters in the optimal state was calculated to be 52.56 m. On average, according to the results of the optimization, an increase of 28.4 and 35% in length and distance between two consecutive watersheds in Zanjanrood River should be done to be within the recommended design criteria.  In comparison with two methods of EA algorithm and artificial neural network (ANN), based on statistical indicators, the results of GWO algorithm with values ​​of R2 = 0.96, RMSE 0.022 and MAE = 0.016 has a higher efficiency.

کلیدواژه‌ها [English]

  • ANN
  • Election Algorithm
  • Grey Wolf Algorithm
  • Groyne
  • optimization
Abouzari, N., Majdzadeh Tabatabai, M. R. and Yazdi, J. (2019). Optimal design of groynes with hydraulic, technical and economic criteria. AmirKabir J. Civil Eng., 53(2), 749-766 [In Persian]. Doi: 10.22060/CEEJ.2019.16646.6289
Alauddin, M. and Tetsuro, T. (2012). Optimum configuration of groynes for stabilization of alluvial rivers with fine sediments. Int. J. Sediment Res., 27(2), 158-167.
Ambagts, L. R., Platzek, F. W., Baron, M. and Yossef, M. F. M. (2020). Numerical modelling approaches for flow near groynes-comparison with experiments. River Flow, CRC Press.
Banihabib, M. E., Mastoori, A. M. and Jamali, F. S. (2008). Field study of the optimal distance between groynes. International Conference of Water Crisis, University of Zabol, Zabol, Iran [In Persian].
Basser, H., Karami, H., Shamshirband, S., Akib, S., Amirmojahedi, M., Ahmad, R. and Javidnia, H. (2015). Hybrid ANFIS–PSO approach for predicting optimum parameters of a protective spur dike. Appl. Soft Comput., 30, 642-649.
Bora, K. and Kalita, H. M. (2019). Determination of best groyne combination for mitigating bank erosion. J. Hydroinform., 21(5), 875-892.
Dezvareh, R. (2019). Providing a new approach for estimation of wave set-up in Iran coasts. Res. Marine Sci., 4(1), 438-448. 
Emami, H. and Derakhshan, F. (2015). Election algorithm: A new socio-politically inspired strategy. AI Communicat., 28(3), 591-603.
Emami, S., Choopan, Y. and Parsa, J. (2019). Dam seepage prediction using RBF and GFF models of artificial neural network; Case study: Boukan Shahid Kazemi's Dam. J. Rehabilit. Civil Eng., 7(13), 15-32.
Ferrari, M., Carpi, L., Pepe, G., Mucerino, L., Schiaffino, C. F., Brignone, M. and Cevasco, A. (2019). A geomorphological and hydrodynamic approach for beach safety and sea bathing risk estimation. Sci. Total. Environ., 671, 1214-1226.
Hosseini, A., Saberi, A. and Habibi, M. (2011). Economic evaluation of groyne built on Zanjanrood, Watershed Eng. Manage., 3(4), 205-213.
Kalita, H.M., Kumar Sarma, A. and Kumar Bhattacharjya, R. (2014). Evaluation of optimal river training work using GA based linked simulation-optimization approach. Water Resour. Manag., 28(8), 2077-2092.
Karmaker, T. and Dutta, S. (2016). Prediction of short-term morphological change in large braided river using 2D numerical model. J. Hydraul. Eng., 142(10), 04016039.
Kinory, B. Z. and Mevorach, J. (1984). Manual of surface drainage engineering. Volume II. Stream flow engineering and flood protection. Elsevier Science Publishers BV.
Larose, D. T. (2014). Discovering knowledge Discovering knowledge in data: an introduction to data mining (Vol. 4). John Wiley & Sons.
Mech, L. D. (1999). Alpha Status, Dominance, and Division of Labor in Wolf Packs. Can. J. Zool., 77(8), 1196-1203.
Menhaj, M. B. (1998). Computational Intelligence, No. 1. The Basic of Artificial Neural Networks. Amirkabir University [In Persian].
Mirjalili, S., Mirjalili, S. M. and Lewis, A. (2014). Grey wolf optimizer. Adv. Eng. Software., 69, 46-61.
Mosavi, M. R., Khishe, M. and Ghamgosar, A. (2016). Classification of sonar data set using neural network trained by gray wolf optimization. Neur. Network World, 26(4), 393.  DOI:10.14311/NNW.2016.26.023
Muro, C., Escobedo, R., Spector, L. and Coppinger, R. (2011). Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations. Behavior. Process., 88(3), 192-197. DOI: 10.1016/j.beproc.2011.09.006
Ostadi, F., Majdzadeh Tabatabai, M. R. and Alimohammadi, S. (2014). Optimization model of design of river groynes dimensions and its role in morphological stabilization of river. J. Hydraul., 9(4), 55-72.
Petersen, M.S. (1986). River engineering. Prentice-Hall. Englewood Cliffs, N.J.
Sobhan, S. A. and Kumar Das. S. (1999). Spacing of straight supers in series. Journal of civil Eng., 27(2), 175-181.
Talaat, A., Attia, K., Elsaeed, G. and Ibraheem, M. (2009). Implementation of spur dike to reduce bank erosion of temporary diversion channels during barrages construction. Austr. J. Basic Appl. Sci., 3(4), 3190-3205.
Telluri, A. R. (2004). Basic principles of engineering and river management. Publisher: Soil Conservation and Watershed Management Research Institute.
Tominago, A. and Jaehun, J. (2008). Flow structure and sediment transport around groins in compound open channels. Nagoya Hydraulic Research Institute for River Basin Management Department of Civil Engineering, Nagoya University.
Vaghefi, M. and Moghaddasi, N. (2014). Performance of groyn on the shoreline changes. Iran. J. Marine Sci. Technol., 18(69), 1-16 [In Persian].
Valsamidis, A. and Reeve, D. E. (2017). Modelling shoreline evolution in the vicinity of a groyne and a river. Contin. Shelf Res., 132, 49-57.
Valsamidis, A. and Reeve, D. E. (2020). A new approach to analytical modelling of groyne fields. Contin. Shelf Res., 211, 104288.
دوره 8، شماره 1
فروردین 1401
صفحه 146-160
  • تاریخ دریافت: 02 فروردین 1400
  • تاریخ بازنگری: 09 خرداد 1400
  • تاریخ پذیرش: 10 خرداد 1400
  • تاریخ اولین انتشار: 10 خرداد 1400