گیاه پالایی فلزات سنگین نیکل، کادمیوم و سرب در سواحل خلیج‌فارس با استفاده از گیاه حرا (Avicennia marina)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

2 استادیار، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

3 دانشیار، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

4 استاد، گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

چکیده

گیاه‌پالایی یکی از مهم‌ترین روش­های زیستی پایدار جهت مقابله با اثرات روزافزون آلاینده­ها است. در این پژوهش کارایی گیاه حرا (Avicennia marina) جهت پالایش فلزات سنگین سرب، کادمیوم و نیکل از محیط­های آبی موردبررسی قرار گرفت. برای نمونه‌برداری از گیاه حرا و رسوبات در سال 1398، 20 ایستگاه در سراسر تالاب خورخوران واقع در غرب بندرعباس مشخص و اقدام به جمع‌آوری نمونه از آب، رسوب و بخش‌های مختلف گیاه گردید. بر اساس نتایج پژوهش، بیش­ترین تجمع فلزات با مقدار mg/kg 38/4 در ریشه درخت حرا مربوط به فلز سنگین سرب و کم­ترین تجمع فلزات با مقدار  mg/kg 261/0 در ریشه درخت حرا مربوط به فلز سنگین کادمیوم بود. نتایج ضریب انتقال برای عناصر سرب و کادمیوم در ریشه درخت حرا بزرگ‌تر از 1 و برای نیکل کم­تر از 1 به­دست آمد. همچنین بین پارامترهای pH و دما با میانگین غلظت تمامی فلزات سنگین در رسوب و بین EC با میانگین غلظت تمامی فلزات سنگین به‌جز نیکل در آب همبستگی معنی­دار آماری وجود داشت (05/0 P>). با توجه به نتایج، اختلاف در غلظت فلزات در بافت برگ و ریشه گیاه حرا ممکن است به­دلیل تفاوت در ساختار فیزیولوژیکی بافت­ها باشد؛ بنابراین، به نظر می­رسد ریشه درخت حرا نسبت به برگ آن برای پالایش فلزات سنگین مناسب­تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Phytoremediation of Heavy Metals Nickel, Cadmium and Lead in the Coasts of the Persian Gulf Using Mangrove (Avicennia marina)

نویسندگان [English]

  • Abed Babak Baharvand 1
  • Maryam Kiani Sadr 2
  • Bahareh Lorestani 3
  • Mehrdad Cheraghi 3
  • Soheil Sobhan Ardakani 4
1 PhD Scholar, Department of Environment, College of Basic Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran
2 Assist. Professor, Islamic Azad University, College of Basic Science, Hamedan Branch, Department of Environment, Hamedan, Iran
3 Assoc. Professor, Department of Environment, College of Basic Science, Hamedan Branch, , Islamic Azad University, Hamedan, Iran
4 Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
چکیده [English]

Introduction: Plant-based modification (phytoremediation) is one of the most important environmentally friendly techniques to deal with the destructive consequences of pollutants. Mangrove forests are tropical wetlands and subtropical wetlands and are important ecologically productive habitats in coastal areas.
Materials and Methods: In this study, the potential of mangroves, Avicennia marina, for phytoremediation of heavy metals (lead, cadmium and nickel) was investigated. To do this, mangroves and sediments of 20 stations in Khor Khoran wetland located in the west of Bandar Abbas were sampled in 2019. The selection of stations was distributed in such a way as to cover the entire surface of the wetland and to provide the necessary information on the release of pollutants in different parts of the wetland. From each station, three samples of surface sediment (up to a depth of 10 cm) weighing about 500 g were collected using a plastic spatula. Each sediment sample was placed in a plastic bag of polyethylene and transferred to the soil laboratory. For root sampling, three sediment samples (0.1 m3) were taken from each station by cat sampling. The precipitate was sieved using 1 mm sieve with water from the area to separate the mangrove roots. These samples were also transported to the laboratory in plastic bags kept in cool box. In root tissue sampling, only plant samples from nutritious mangrove roots were selected and larger respiratory roots were avoided. Moreover, the actual amount of heavy elements absorbed by the leaves and roots of mangrove trees was calculated and the transfer coefficient was measured.
Results: The results of this study showed that different amounts of three heavy metals, lead, cadmium and nickel, are present in sediment, roots and leaves in the mangrove habitat of Khor Khoran wetland. The results showed high concentrations of heavy metals lead, cadmium and nickel in stations 1, 9, 15 and 20, which can be brought about by various factors. One of these factors is the proximity of the mentioned stations to the ship repair site. In addition, there are other important factors including the discharge of untreated wastewater from villages and surrounding towns to these stations, the high volume of traffic and loading of boats and fishing boats, and the proximity of these areas to the most important manufacturing and petrochemical industries of Bandar Abbas. The pattern of metal accumulation in sediment samples of the present study was nickel>lead>cadmium. The process of metal accumulation in plant samples, whether root or leaf, was obtained as lead> nickel> cadmium. According to the results, the highest accumulation of metals with a value of 4.38 mg/kg in mangrove root was related to lead and the lowest accumulation of metals with a value of 0.162 mg/kg was related to mangrove root. The results of lead and cadmium transfer coefficient in mangrove root were more than 1 and less than 1 for nickel. In addition, there was a significant correlation (p>0.05) between pH and temperature with the average concentration of all heavy metals in sediment and between EC and the average concentration of all heavy metals except nickel in water.
Conclusion: In summary, a significant negative correlation was observed between cadmium concentration in water and sediment with EC and pH parameters, which seems to decrease with increasing EC and pH, cadmium concentration in water and sediment. Differences in metal concentrations in leaf and root tissues may be due to differences in the physiological structure of tissues. Therefore, it seems that mangrove roots are more suitable for refining heavy metals than heavy leaves.

کلیدواژه‌ها [English]

  • heavy metals
  • Mangrove Plant
  • Transfer coefficient
  • Wetlands
Asadi Kapourchal, S.,and Jalali, V. (2021). Phytoremediation and estimation of optimal clean up time of lead contaminated soils using Portulaca oleracea L. and Amaranthus retroflexus. J. Environ Water Eng., 7(1), 25–37. DOI: 10.22034/jewe.2020.248656.1424.
Bahmanyar, M. A. (2007). The effect of wastewater consumption on irrigation of crops on the amount of some heavy elements in soil and plants. J. Ecol, (44), 19-26 [In Persian].
Cheraghi, M., Dadallahi, S. and Safahie, A.R. (2012). Iinvestigation of heavy metal accumulation in the bed, leaves and roots of Avicennia marina in Khuzestan province. J. Mar. Sci. Technol., 11(4), 46-56 [In Persian].
Cheraghi, M., Safahie, A. R. and Dadallahi, S. (2014). Changes in heavy metal concentrations in mangrove organs (Avicennia marina) and sediments of Bardestan habitat in Bandar Dir. Wetland Ecol. Quart., 5, 45-54. [In Persian].
Davari, A., Danekar, A. and Khorasani, N. (2010). Investigation of heavy metal accumulation in the bed, leaves and roots of mangrove trees (Avicennia marina) in Bushehr province. J. Nat. Environ., 63(3), 267-277 [In Persian].
Defew, L. H., Mair, J. M. and Guzman, H. M. (2005). An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay. Pacific Panama Mar. Pollut. Bull., 50, 547-552. doi.org/10.1016/j.marpolbul.2004.11.047.
Dehghani, M., Karami, M. and Danehkar, A. (2008). Iinvestigation and identification of aquatic species diversity in Khorkhoran International Wetland. The first regional conference on aquatic ecosystems in Iran [In Persian].
Eisazadeh, Lazarjan, S., Kapourchal, S. A., Homaee, M., Noorhosseini, S. A. and Damalas, C. A. (2019). Chive (Allium schoenoprasum L.) response as a phytoextraction plant in cadmium-contaminated soils. Environ. Sci. Pollut. Res., 26(1), 152-160. DOI: 10.1007/s11356-018-3545-2.
Gülcü-Gür, B. and Tekin-Özan, S. (2017). The Investigation of heavy metal levels in water and sediment from Işikli Lake (Turkey) in relation to seasons and physico-chemical parameters. J. Aqua. Eng. Fish. Res., 3(2), 87-96. DOI:10.3153/JAEFR17012.
Hamzeh, M. A., Boomeri, M. and Rezaee, H. (2011). Environmental geochemistry of heavy metals in the coastal sediments of Gawter Bay, the southeast extreme of Iran. J. Ocean., 2(8), 61-76. [In Persian].
Kansal, A., Siddiqui N. A. and Gautam, A. (2013). Assessment of heavy metals and their interrelationships with some physicochemical parameters in eco-efficient rivers of Himalayan region. Environ. Monit. Assess., 185, 2523-2563. doi.org/10.1007/s10661-012-2730-x.
Khan, A. H. A., Kiyani, A., Mirza, C. R., Butt, T. A., Barros, R., Ali, B., Iqbal, M. and Yousaf, S.  (2021). Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ. Res., 195, 110780.DOI:10.1016 /j.envres.2021.110780.
Marchand, C., Lallier, E. and Baltzer, F. (2006). Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar. Chem., 98, 1–17. DOI: 10.1016/j.marchem.2005.06.001.
MOOPAM. (2010). Manual of oceanographic observations and pollutants analysis methods (Fourth Edition). The Regional Organization of the Protection of the Marin Environmental (ROPME). Kuwait.
Mortazavi, T., Rahmani, J. and Chaman, A. (2017). Bio-monitoring of heavy metals using Phragmites australis in Heshilan wetland, Kermanshah. J. Environ. Sci. Technol., 19(4), 69-79 [In Persian].
Mutlu, E. and Kurnaz, A. (2016). Assessment of physicochemical parameters and heavy metals pollution in Celtek pond water. India. J. Geo Mari. Sci., 47(6), 1185-1192.
Nazli, M. F., and Hashim, N. R. (2010). Heavy Metal Concentrations in an Important Mangrove Species, Sonneratia caseolaris, in Peninsular Malaysia. Environ. Asia, 3, 50-55.
Noroozi, M., Mohammadi, A., Behbahaninia, A. and Babaei, F. (2021). Investigation of heavy metal pollution in the sediments of Salehieh Wetland, Karaj, Iran. Environ. Water Eng. 7(1), 50–58. DOI: 10.22034/jewe. 2020. 25 4598.1450.
Obinna, I. B. and Ebere, E. C. (2019). phytoremediation of polluted waterbodies with aquatic plants: recent progress on heavy metal and organic pollutants. Environ. Chem. J., doi:10.24200/ amecj. v2.i03.66.
Ohimain, E. I., Daniel, S. and Olu, T. (2007). Bioleaching of heavy metals from abandoned mangrove dredged spoils in the Niger Delta; a laboratory study. World Appl. Sci. J., 7(9), 1105- 1113.
Parvinnia, M. (2008). Pollution of coastal waters, aquatic animals and sediments caused by the activity of different phases of Pars energy special economic zone. The second conference and specialized exhibition of environmental engineering, Tehran [In Persian].
Roniasi, N. and Parvizi Mosaed H. (2016). Investigation of heavy metals in different parts of some vegetables consumed in Karaj. J. Health Environ., 9(2), 171-184 [In Persian].
Saxena, G., Purchase, D., Mulla, S. I., Saratale, G. D. and Bharagava, R N. (2019). Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev. Environ. Contam.  Toxic., 249, 71-131. DOI: 10.1007/398 _2019 _24.
Singh, A. P., Srivastava, P. C. and Srivastava, P. (2007). Relationships of heavy metals in natural lake waters with physico-chemical characteristics of waters and different chemical fractions of metals in sediments. Water Air Soil Pollut., 188, 181-193.
Sofiani, N., Moradi, H. and Razavi, Z. (2015). Effect of some physicochemical properties of sediment on the concentration of heavy metals nickel and vanadium in sediments of roots and leaves of mangrove trees. J. Nat. Environ., 68(2), 277-292 [In Persian].
Steliga, T. and Kluk, D. (2020). Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicol. Environ. Saf., 194, 110409.
Veerasingam, S., Raja, P. andVenkatachalapathy, R. (2010). Distribution of petroleum hydrocarbon concentration in coastal sediment along Tamilnadu Coast, India. Carpathian J. Earth Environ. Sci., 5(2), 5-8.
Zahed, M. A., Rouhani, F. and Mohajeri, S. (2010). An overview of Iranian mangrove ecosystems. northern part of the Persian Gulf and Oman Sea. Acta Ecologica Sinica. 30: 240–244.