نوع مقاله : مقاله کوتاه

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آب، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

2 استاد گروه مهندسی آب، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

چکیده

یکی از راه‌های بررسی تغییرات مکانی و زمانی کیفیت آب زیرزمینی، روش زمین‌آمار می‌باشد. شناخت و آگاهی از تغییرات زمانی و مکانی پارامترهای کیفی به‌ویژه شوری در منابع آب زیرزمینی و سطحی و تهیه نقشه‌های پهنه‌بندی می‌تواند گام مهمی در مدیریت و برنامه‌ریزی صحیح در استفاده از منابع آب باشد. در این پژوهش به ارزیابی روند تغییرات مکانی و زمانی برخی از پارامترهای کیفیت آب زیرزمینی استان گیلان پرداخته‌شده است. اطلاعات اندازه‌گیری برخی کاتیون‌ها و آنیون‌ها نمونه‌برداری شده از ۱۵۰ چاه در ماه‌های شهریور و اسفند برای سال‌های 1390 تا 1397 و اطلاعات سطح ایستابی ۲۸۲ چاه پیزومتری جمع‌آوری شد. نقشه‌های پهنه‌بندی به‌دست‌آمده از روش کریجینگ معمولی موردبررسی قرار گرفت. این نقشه­ها نشان می­دهند که از نظر پارامترهای کیفی، منابع آب زیرزمینی بخش مرکزی استان گیلان مقادیر بیش­تری دارند و در فصل زراعی به­دلیل فعالیت‌های کشاورزی و کوددهی کیفیت آب زیرزمینی کاهش می‌یابد. اثر عمق آب زیرزمینی بر مقدار غلظت پارامترها بررسی شد. با توجه به نقشه تغییرات عمق آب زیرزمینی بیش­ترین مساحت استان گیلان دارای سطح ایستابی ۲۳/۰ تا m ۵/۵ می‌باشد. نتایج طبقه‌بندی پارامترهای کیفی نشان می‌دهد که در عمق‌های کم آب زیرزمینی غلظت پارامترهای کیفی افزایش می‌یابد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating Spatio-Temporal Variations of Groundwater Quality of Guilan Province using Geostatistical Method

نویسندگان [English]

  • Seyed Esmaeil Mirabdolahi 1
  • Ebrahim Amiri 2

1 PhD Scholar, Water Engineering Department, Lahijan Branch, Islamic Azad University, Lahijan, Iran

2 Professor, Water Engineering Department, Lahijan Branch, Islamic Azad University, Lahijan, Iran

چکیده [English]

Knowledge and awareness of temporal and spatial changes of quality parameters, especially salinity in groundwater and surface water resources and the preparation of zoning maps can be an important step in proper management and planning in the use of water resources. In this research, the trend of spatial and temporal changes of some groundwater quality parameters in Guilan province has been evaluated. Measurement data of some cations and anions sampled from 150 wells in September and March of 2011-2018 and water level data of 282 piezometric wells were collected. The zoning maps obtained by ordinary kriging method were examined. These maps show that in terms of quality parameters, groundwater resources in the central part of Gilan province have higher values ​​and in the growing season due to agricultural activities and fertilization, groundwater quality decreases. Effect of groundwater depth on the concentration of the parameters was assessed. According to the map of groundwater depth changes, the largest area of ​​Gilan province has a water level of 0.23 to 5.5 m. The results of classification of qualitative parameters show that in shallow groundwater depths the concentration of qualitative parameters increases.

کلیدواژه‌ها [English]

  • GIS
  • Groundwater Depth
  • Interpolation
  • Kriging
  • Water Quality
Amiri Bourkhani, M., Khaledain, M., Ashrafzade, A. and Shahnazari, A. (2016). Investigation of temporal and spatial changes of groundwater salinity in Yazd province using indicator kriging geostatistical method. Echo. Hydrol. 3, 333-345.
Arslan, H. (2012). Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: the case of Bafra Plain, Turkey. Agri. Water Manage., 113, 57–63.
Ashrafzadeh, A., Roshandel, F., Khaledian, M., Vazifedoust, M. and Rezaei, M. (2016). Assessment of groundwater salinity risk using kriging methods: A case study in northern Iran. Agri. Water Manage., 178, 215–224. doi: 10.1016/j.agwat.2016.09.028
Bradaï, A., Douaoui, A., Bettahar, N. and Yahiaoui, I. (2016). Improving the prediction accuracy of groundwater salinity mapping using indicator kriging method. J. Irrig. Drain. Eng., 142(7), 4016023.
Chica-Olmo, M., Luque-Espinar, J. A., Rodriguez-Galiano, V., Pardo-Igúzquiza, E. and Chica-Rivas, L. (2014). Categorical indicator Kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain). Sci. Total Environ., 470, 229–239.
Dash, J. P., Sarangi, A. and Singh, D. K. (2010). Spatial variability of groundwater depth and quality parameters in the national capital territory of Delhi. Environ. Manage., 45(3), 640–650. doi: 10.1007/s00267-010-9436-z
Delbari, M. and Afrasiab, P. (2014). Application of indicator and ordinary Kringing for modeling of groundwater chloride. J. Environ. Stud., 40(3), 751–764.
GhahroudiTali, M. (2002). Kriging interpolation evaluation. Geogra. Res., 3(43), 95–108.
Jahanshahi, A., Moghaddam, E. R. and Dehvari, A. (2014). Investigating groundwater quality parameters using GIS and Geostatistics (Case study: Shahr-Babak Plain Aquifer). Water Soil Knowled., 24(2), 183–197.
Jang, C. C. S. (2013). Use of multivariate indicator kriging methods for assessing groundwater contamination extents for irrigation. Environ. Monit. Assess., 185(5), 4049–4061. doi: 10.1007/s10661-012-2848-x
Jang, C. C., Chen, S. K. and Ching‐Chieh, L. (2008). Using multiple‐variable indicator kriging to assess groundwater quality for irrigation in the aquifers of the Choushui River alluvial fan. Hydrol. Process. An Int. J., 22(22), 4477–4489. doi: 10.1002/hyp
Ostad-Ali-Askari, K., Shayannejad, M. and Ghorbanizadeh-Kharazi, H. (2017). Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE J. Civil Eng., 21(1), 134–140. doi: 10.1007/s12205-016-0572-8
Wang, Z. M., Song, K. S., Zhang, B., Liu, D. W., Li, X. Y., Ren, C. Y., Zhang, S. M., Luo, L. and Zhang, C. H. (2009). Spatial variability and affecting factors of soil nutrients in croplands of Northeast China: a case study in Dehui County. Plant Soil Environ., 55(3), 110–120.