مروری بر کاربرد جذب زیستی جهت حذف نیکل از محلول های آبی

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه عمران، واحد تنکابن، دانشگاه آزاد اسلامی، تنکابن، ایران

2 دانشجوی دکترا، گروه مهندسی شیمی، دانشگاه فنی نوشیروانی بابل، بابل، ایران

چکیده

جذب­زیستی نیکل با زیست­توده غیرزنده، غیر فعال، میکروبی یا گیاهی یک فناوری جایگزین و نوآورانه برای حذف این آلودگی از محلول­های آبی است. این جاذب­های دارای قابلیت جذب و بازجذب بالایی می­باشند. در این مطالعه، با هدف معرفی انواع مختلف جاذب­های زیستی میکروبی و گیاهی به­منظور حذف نیکل از محلول آبی و آشکارسازی ظرفیت جذب هر جاذب، از مقالات منتشر شده بین سال­های 2001 تا 2020 استفاده شد. نتایج کارهای پژوهشی انجام شده برای مقایسه ظرفیت جذب جاذب­های میکروبی و گیاهی برای حذف نیکل از محلول آبی مورد استفاده قرار گرفت. مطالعات نشان داد که ظرفیت جذب پوست گریپ فروت با 95% نسبت به سایر مشتقات گیاهی مطلوب­تر است. Curtobacterium sp همچنین دارای 100% ظرفیت جذب در بین جاذب­های زیستی میکروبی است. پژوهش­ها نشان داد که استفاده از این زیست­توده­ها به­عنوان جاذب زیستی برای حذف نیکل در محلول آبی دارای چشم انداز امیدوار کننده و سازگار با محیط­زیست می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Application of Biosorption in Removal of Nickel from Aqueous Solutions

نویسندگان [English]

  • Mehdi Nezhadnaderi 1
  • Hamid Gooran Orimi 2
1 Assist. Professor, Department of Civil Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
2 PhD Scholar, Department of Chemical Engineering, Babol Noshirvani University of technology, Babol, Iran
چکیده [English]

Biological uptake nickel by living, inactive, microbial or plant-derived biomass is an alternative and innovative technology to remove this contaminat from aqueous solutions. It has high adsorbency and readsorption capacity. In this study, with the aim of introducing different types of microbial and plant-derived biological adsorbents in order to remove nickel from aqueous solution and revealing the adsorption capacity of each adsorbent, articles published between 2001 and 2020 were used. The results of research works performed were used to compare the adsorption capacity of microbial and plant-derived biosorbents to remove nickel from aqueous solution. Studies showed that the skin uptake capacity of grapefruit with 95% is more favorable than other plant derivatives. Curtobacterium sp also has the best performance with 100% adsorption capacity among microbial biosorbents. Research showed that the use of these biomasses, as a biological adsorbent, for the removal of nickel in aqueous solution is a promising and environmentally friendly prospect.

کلیدواژه‌ها [English]

  • Biosorbent
  • Biosorption capacity
  • nickel
  • Water
Abdelfattah, I., Ismail, A. A., Al Sayed, F., Almedolab, A. and Aboelghait, K. (2016). Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. J. Environ. Nanotech. Monit. Manage., 6, 176‐183. DOI: 10.1016/j.enmm.2016.10.007.
Adams, A. D. (1975). Activated carbon old solution toold problem. part 1, 2. J. W.S.W., 118 (8-9), 46-48, 78-80.
Aghababai Beni, A. and Esmaeili, A. (2019). Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. J. Environ. Technol. Innov., 17, 100503. DOI: 10.1016/j.eti.2019.100503.
Aksu, Z. (2002). Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. J. Process Biochem., 38, 89-99. DOI: 10.1016/S0032-9592(02)00051-1.
Aloma, I., Martı´n-Lara, M. A., Rodrı´guez, I. L., Bla´zquez, G. and Calero, M. (2012). Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J. Taiwan Inst. Chem. Eng., 43, 275–281. DOI: 10.1016/j.jtice.2011.10.011.
Amini, M., Younesi, H. and Bahramifar, N. (2009). Biosorption of nickel(II) from aqueous solution by Aspergillus niger: Response surface methodology and isotherm study. Chemosphere., 75, 1483–1491. DOI: 10.1016/j.chemosphere.2009.02.025.
Anitha, D., Ramadevi, A. and Seetharaman, R. (2020). Biosorptive removal of Nickel(II) from aqueous solution by Mangosteen shell activated carbon. J. Mater. Today: Proceed., 1–5. DOI: 10.1016/j.matpr.2020.02.748.
Arup, K. and Senguptx, E. D. (1995). Ion exchange technology: Advances in pollution control. Technomic Publishing Company, Inc., Lancaster, PA, U.S, 399.
Asadaki, Z., Ansari, R. and Ostvar, F. (2019). Removal of nickel (II) ions using iron oxide (III) nanoparticles from aqueous solutions: Study of kinetic, isothermal and thermodynamic models. J. Health Environ., (3)12, 396-383. [In Persian].
Asmi, N. (1999). Preventing the loss of chromium in the plating industry and examining the possibility of recycling it by ion exchange method, M.Sc. Thesis, University of Tehran. [In Persian].
Bahnemann, D. (2004). Photocatalytic water treatment: Solar energy applications. J. Solar Ener., 77, 445-9. DOI:10.1016/j.solener.2004.03.031.
Banshi, M. M. (2002). Investigation of anionic resin performance in simultaneous removal of organic and mineral pollutants from water. Master Thesis, Faculty of Health, University of Tehran. [In Persian].
Barquilha, C. E. R., Cossich, E. S., Tavares, C. R. G. and Silva, E. A. (2018). Biosorption of nickel(II) and copper(II) ions by Sargassum sp. In nature and alginate extraction products. J. Bioresour. Technol. Report., 5, 43-50. DOI: 10.1016/j.biteb.2018.11.011.
Barquilha, C., Cossich, E., Tavares, C. and Silva, E. (2017). Biosorption of nickel (II) and copper (II) ions in batch and fixed‐bed columns by free and immobilized marine algae Sargassum sp. J. Clean. Product., 150, 58‐64. DOI: 10.1016/j.jclepro.2017.02.199.
Basu, H., Saha, S., Mahadevan, I. A., Pimple, M. V. and Singhal, R. K. (2019). Humic acid coated cellulose derived from rice husk: A novel biosorbent for the removal of Ni and Cr. J. Water Process Eng., 32, 1-8. DOI: 10.1016/j.jwpe.2019.100892.
Bolong, N. (2000). A review of the effect of emerging contamination in wastewater and options for their removal. Desal., 239, 229-46. DOI: 10.1016/j.desal.2008.03.020.
Bootharaju, M. S. and Pradeep, T. (2010). Uptake of toxic metal ions from water by naked and monolayer protected silver nanoparticles: an x-ray photoelectron spectroscopic investigation. J. Phys. Chem. C., 114 (18), 8328-8336.  DOI: 10.1021/jp101988h.
Cain, M. and Morrell, R. (2001). Nanostructured ceramics: a review of their potential. Appl. Organ. Chem., 15, 321-30.
Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separ. Purif. Technol., 38, 11-41. [In Persian].
Chicgoua, N., Sabine, C. and Richard, C. (2012). Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut., 223, 1363–82. DOI: 10.1007/s11270-011-0951-1.
Choe, S., Chang, Y. Y., Hwang, K. Y. and Khim, J. (2000). Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 41(8), 1307-11. DOI: 10.1016/s0045-6535(99)00506-8
Chutia, P., Kato, S., Kojima, T. and Satokawa S. (2009). Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Matter., 162, 440-47.
Dabrowski, A. and Hubicki, Z. (2004). Selective removal of the heavy metal Ions from waters and Industrial waste waters by Ion-exchange method. Chemosphere, 56(2), 91-106. DOI: 10.1016/j.chemosphere.2004.03.006.
Danila, V., Vasarevicius, S. and Valskys, V. (2018). Batch removal of Cd(II), Cu(II), Ni(II), and Pb(II) ions using stabilized zero-valent iron nanoparticles. J. Ener. Proced., 147, 214-219.  DOI: 10.1016/j.egypro.2018.07.062.
Du, Z., Wenqiang, G., Guozhang, C., Shuai, L., Weizhou, J. and Youzhi, L. (2019). Removal of heavy metal lead(II) using nanoscale zero-valent iron with different preservation methods. J. Adv. Powder Technol., 30(3), 581-589. DOI: 10.1016/j.apt.2018.12.013.
Du, Z., Zheng, T., Wang, P., Hao, L. and Wang, Y. (2016). Fast microwave‐assisted preparation of a low‐cost and recyclable carboxyl modified lignocellulose‐biomass jute fiber for enhanced heavy metal removal from water. J. Bioresour. Technol., 201, 41-49. DOI: 10.1016/j.biortech.2015.11.009.
Dyer, A., Hudson, M. J. and Williams, P. A. (1997). Progress in ion exchange advances and applications. 1st Edition, Kindle Edition.
El‐Gendy, M. M. A. A. and El‐Bondkly, A. M. A. (2016). Evaluation and enhancement of heavy metals bioremediation in aqueous solutions by Nocardiopsis sp. MORSY1948, and Nocardia sp. MORSY2014. Brazil. J. Microb., 47(3), 571‐586. DOI: 10.1016/j.bjm.2016.04.029.
Elise, D. L., Ludovic, D. and Lingxue, K. (2020). Nanofibers for heavy metal ion adsorption: Correlating surface properties to adsorption performance, and strategies for ion selectivity and recovery. Environ. Nanotech. Monit. Manage., 13 , 100297. DOI: 10.1016/j.enmm.2020.100297.
Foltynowicz, F., Maranda, A., Czajka, B., Wachowski, L. and Sałaciński, T. (2020). The effective removal of organic and inorganic contaminants using compositions based on zero-valent iron nanoparticles (n-ZVI). J. Materiały Wysokoenergetyczne / High Ener. Mater., 37-74.  DOI: 10.22211/matwys/0172E.
Gabr, R. M., Hassan, S. H. A. and Shoreit, A. A. M. (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int. Biodeter. Biodegrad., 62, 195–203. DOI: 10.1016/j.ibiod.2008.01.008.
Gao, W., Zhong, D., Xu, Y., Luo, H. and Zeng, S. (2020). Nano zero-valent iron supported by macroporous styrene ion exchange resin for enhanced Cr(VI) removal from aqueous solution. J. Disper. Sci. Technol., 1-11. DOI: 10.1080/01932691.2020.1848583.
Garcia, S., Ake C., Clement B., Huebuer, H., Donnelly, K. and Shalat, S. (2001). Initial results of environmental Monitoring in the Texas Rio Grande Valley. J. Environ Int., 26(7-8), 465-74. DOI: 10.1016/s0160-4120(01)00027-7.
Gholami, Z., Hooshmand, A., Naseri, A. and Pourreza, N., (2013). Removal of Cd(II) and Ni(II) from contaminated water using nano particles bagasse fly ash. J. Irrig. Sci. Eng., 36, 107-97 [In Persian].
Gil-Díaz, M., Álvarez, M. A., Alonso, J. and Lobo, M. C. (2020). Effectiveness of nanoscale zero-valent iron for the immobilization of Cu and/or Ni in water and soil samples.  Sci. Report., 10(1), 10527-37.  DOI: 10.1038/s41598-020-73144-7.
Giovanella, P., Cabral, L., Costa, A. P., de Oliveira Camargo, F. A., Gianello, C. and Bento, F. M. (2017). Metal resistance mechanisms in Gram‐negative bacteria and their potential to remove Hg in the presence of other metals. J. Ecotoxic. Environ. safety, 140, 162‐169. DOI: 10.1016/j.ecoenv.2017.02.010.
Harland, C. E. (2012). Ion Exchange: theory and practice, 2nd Edition.
Herrera-Barros, A., Tejada-Tovar, C., Villabona-Ortíz, A., Gonzalez-Delgado, A. D. and, Benitez-Monroy, J. (2020). Cd (II) and Ni (II) uptake by novel biosorbent prepared from oil palm residual biomass and Al2O3 nanoparticles. Sustain. Chem. Pharm., 15, 1-7. DOI: 10.1016/j.scp.2020.100216.
Hlihor, R. M., Figueiredo, H., Tavares, T. and Gavrilescu, M. (2017). Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr (VI): batch and column studies. Process Safety Environ. Protect., 108, 44‐56. DOI: 10.1016/j.psep.2016.06.016.
Holan, Z. R., Volesky, B. and Prasetyo, I. (1993). Biosorption of Cd by biomass of marine algae. Biotech. Bioeng., 41, 819-825.  DOI: 10.1002/bit.260410808.
Jones, B. O., John, O. O., Luke, C., Ochieng, A. and Bassey, B. J. (2016). Application of mucilage from dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions. Environ. Manage., 177, 365‐372. DOI: 10.1016/j.jenvman.2016.04.011
Karabelli, D., Üzüm, C., Shahwan, T., E. Eroğlu, A., B. Scott, T., R. Hallam, K. and Lieberwirth, L. (2008). Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: A study of the capacity and mechanism of uptake. Indust. Eng. Chem. Res., 47(14), 4758-4764.  DOI: 10.1021/ie800081s.
Kaur, K., Kumar, V. and Saruchi. (2021). Nanocomposites materials as environmental cleaning. In: Environmental remediation through carbon based nano composites. Springer Singapore.
Krstić, V. (2021). Some effective methods for treatment of wastewater from Cu production.  Part of the environmental chemistry for a sustainable world book series. Water pollution and remediation: heavy metals., 313-440.  DOI: 10.1007/978-3-030-52421-0_12.
Li, X. Q. and Zhang, W. X. (2006). Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir., 22(10), 4638-42. DOI: 10.1021/la060057k.
Li, Y. and Somorjai, G. A. (2010). Nanoscale advances in catalysis and energy applications. Nano Lett., 10(7), 2289–95. DOI:10.1021/nl101807g.
Liou, Y. H., Lo, S. L., Lin, C. J., Kuan, W. H. and Weng, S. C. (2005). Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. Hazard. Mater., 127(1), 102-10.  DOI: 10.1016/j.jhazmat.2005.06.029.
Liu, M., Wang, Y., Chen, L., Zhang, Y. and Lin, Z. (2015). Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl. Mater. Interface., 7(15), 7961-7969. DOI: 10.1021/am509184e.
Long, J., Gao, X., Su, M., Li, H., Chen D. and Zhou, S. (2018). Performance and mechanism of biosorption of Nickel(II) from aqueous solution by non-living Streptomyces roseorubens SY. Colloid. Surface. A: Physicochem. Eng. Aspect., 548(5), 125-133. DOI: 10.1016/j.colsurfa.2018.03.040.
Mahmoud, M. E., Abdou, A. E., Mohamed, S. M. and Osman, M. M. (2016). Engineered staphylococcus aureus via immobilization on magnetic Fe3O4‐phthalate nanoparticles for biosorption of divalent ions from aqueous solutions. Environ. Chem. Eng., 4(4), 3810‐3824. DOI: 10.1016/j.jece.2016.08.022.
Malik, R. and Dahiya, S. (2017). An experimental and quantum chemical study of removal of utmostly quantified heavy metals in wastewater using coconut husk: A novel approach to mechanism. Int. J. Bio. Macromol., 98, 139‐149. DOI: 1016/j.ijbiomac.2017.01.100.
Marhol, M. (1982). Ion exchangers in analytical chemistry. Their properties and use in inorganic chemistry. 1st Edition. Elsevier Science.
Masnadi, M., Yao, N., Braidy, N. and Moores, A. (2015). Cu(II) galvanic reduction and deposition onto iron nano- and microparticles: resulting morphologies and growth mechanisms.  Langmuir, 31(2), 789-798. DOI: 10.1021/la503598b.
Masoumi, F., Khadivinia, E., Alidoust, L., Mansourinejad, Z., Shahryari, S., Safaei, M., Mousavi, A., Salmanian, A. H., Zahiri, H. S. and Vali, H. (2016). Nickel and lead biosorption by Curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of northeast Iran. Environ. Chem. Eng., 4(1), 950‐957. DOI: 10.1016/j.jece.2015.12.025.
Mauricio, A. V., Weile Yan, R., Li, X., Koel, B. E. and Zhang, X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core−shell structure. J. The J. Phys. Chem. C., 113(33), 14591-14594.  DOI: 10.1021/jp9051837.
Milojković, J., Pezo, L., Stojanović, M., Mihajlović, M., Lopičić, Z., Petrović, J., Stanojević, M. and Kragović, M. (2016). Selected heavy metal biosorption by compost of Myriophyllum spicatum—a chemometric approach. Ecol. Eng., 93, 112‐119. DOI:10.1016/j.ecoleng.2016.05.012.
Mohammadi-Aloucheh, R., Alaee Mollabashi, Y., Asadi, A., Baris, O. and Golamzadeh, S. (2018). The role of nanobiosensors in identifying pathogens and environmental hazards. Anthropo. Polluti., 2(2), 16-25. DOI: 10.22034/AP.2018.572812.1024.
Montazer-Rahmati, M. M., Rabbani, P., Abdolali, A. and Keshtkar, A. R. (2011). Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. Hazard. Mater., 185, 401–407. DOI: 10.1016/j.jhazmat.2010.09.047.
Newsome, L., Morris, K., Cleary, A., Karl Masters-Waage, N., Boothman, C. and Joshi, N., Atherton, N., Lloyd, J. R. (2019). The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities.  Hazard. Mater., 364, 134-142.  DOI: 10.1016/j.jhazmat.2018.10.008.
Nongmaithem, N., Roy, A. and Bhattacharya, P. M. (2016). Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Brazil. J. Microb., 47(2), 305‐313. DOI: 10.1016/j.bjm.2016.01.008.
Noormohamadi, H. R.,  Fat'hi, M. R., Ghaedi , M., and Ghezelbash, G. R. (2019). Potentiality of white-rot fungi in biosorption of nickel and cadmium: modeling optimization and kinetics study. J. Chemosphere, 216, 124-130. DOI: 10.1016/j.chemosphere.2018.10.113.
Nuhoglu, Y. and Malkoc, E. (2009). Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresour. Technol., 100, 2375–2380. DOI: 10.1016/j.biortech.2008.11.016.
Ozer, A., Gurbuz, G., Calimli, A. and Korbahti, B. K. (2008) Investigation of nickel(II) biosorption on Enteromorpha prolifera: Optimization using response surface analysis. J. Hazard. Mater., 152, 778–788. DOI:10.1016/j.jhazmat.2007.07.088
Padmavathy, V., Vasudevan, P. and Dhingra, S. C. (2002). Biosorption of nickel(II) ions on Baker’s yeast. Process Biochem., 38, 1389-1395. DOI: 10.1016/S0032-9592(02)00168-1.
Pahlavanzadeh, H., Keshtkar, A. R., Safdari, J. and Abadi, Z. (2010). Biosorption of nickel(II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies. J. Hazard. Mater., 175, 304–310. DOI: 10.1016/j.jhazmat.2009.10.004.
Pasinszki, T. and Krebsz, M. (2020). Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. J. Nanomater., 10(5), 917. DOI: 10.3390/nano10050917.
Paul, A. B. (1996). Electrolytic treatment of turbid water in package plant. in: Pickford, J. et al. (eds). Reaching the unreached - Challenges for the 21st century. Proceedings of the 22nd WEDC International Conference, New Delhi, India.
Qin, H., Hu, T., Zhai, Y., Lu, N. and Aliyeva, J. (2019). The improved methods of heavy metals removal by biosorbents: A review. J. Environ. Pollut., 258, 1-64. DOI: 10.1016/j.envpol.2019.113777.
Rajeswari, M., Kulkarni, K., Vidya Shetty, K. and Srinikethan, G. (2013). Cadmium (II) and nickel (II) biosorption by Bacillus laterosporus (MTCC 1628). J. Taiwan Inst. Chem. Eng., 45(4). pp.1628-1635. DOI: 10.1016/j.jtice.2013.11.006.
Robertaccio, F. L. and Flynn, B. P. (1976). Truth or consequences: biological fouling and other consideration in the PAC-AS system. 31st Purdue industrial waste conference, 855-862.
Sadat Hosseini, S., Asm Hosseini, M., Khezri, S., Ghanbari Taluki, F. and Khosravi, A. (2016). Removal of nickel ions from aqueous solutions using natural zeolite along with a case study. J. Appl. Chem., 41, 48-39 [In Persian].
Saha, G. C., Hoque, M. I. U., Miah, M. A. M.., Holze, R., Chowdhury, D. A., Khandaker, S. and Chowdhury, S. (2017). Biosorptive removal of lead from aqueous solutions onto Taro (Colocasiaesculenta (L.) Schott) as a low cost bioadsorbent: Characterization, equilibria, kinetics and biosorption‐mechanism studies. Environ. Chem. Eng., 5(3), 2151‐2162. DOI: 10.1016/j.jece.2017.04.013.
Salmani, M. H., Ehrampoush, M. H. and Aboiian, M. (2013). Comparison between Ag (I) and Ni (II) removal from synthetic nuclear power plant coolant water by iron oxide nanoparticles. J. Health Eng. Sci., 11(1), 21. DOI: 10.1186/2052-336X-11-21.
Sarioglu, M. (2004). Removal of ammonium from municipal waste water using natural Turkish (Dogantepe) zeolite. Separ. Purif. Technol., 41(1), 1-11. DOI:10.1016/j.seppur.2004.03.008.
Savage, N. and Diallo, M. S. (2005). Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Res., 7, 331–42. DOI: 10.1007/s11051-005-7523-5.
Shi, L., Wei, D., Ngo, H. H., Guo, W., Du, B. and Wei, Q. (2015). Application of anaerobic granular sludge for competitive biosorption of methylene blue and Pb (II): fluorescence and response surface methodology. Bioresour. Technol., 194, 297‐304. DOI: 10.1016/j.biortech.2015.07.029.
Shohoudi, M. (2004). Investigating the possibility of removing copper and nickel from industrial plating wastewater and recycling it as salts using T.M.A. type mineral mineral resin. Master Thesis. University of Tehran. [In Persian].
Shroff, K. A. and Vaidya, V. K. (2011). Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chem. Eng. J., 171(2011), 1234-1245. DOI: 10.1016/j.cej.2011.05.034.
 Singh S. and  Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol., 98(12), 2243-57. DOI:10.1016/j.biortech.2005.12.006.
Sravanthi, K., Ayodhya, D. and Yadgiri Swamy, P. (2018). Green synthesis, characterization of biomaterial-supported zero-valent iron nanoparticles for contaminated water treatment. J. Analyt. Sci. Technol., 9 (1). DOI: 10.1186/s40543-017-0134-9.
Suzaki, P. Y. R., Munaro, M. T., Triques, C. C., Kleinübing, S. J., Klen, M. R. F., de Matos Jorge, L. M.. and Bergamasco, R. (2017). Biosorption of binary heavy metal systems: Phenomenological mathematical modeling. Chem. Eng. J., 313, 364‐373. DOI: 10.1016/j.cej.2016.12.082.
Tahir, M. B., Nawaz, T., Nabi, G., Sagir, M., Isa Khan, M. and Malik, N. (2020). Role of nanophotocatalysts for the treatment of hazardous organic and inorganic pollutants in wastewater.  Int. J. Environ. Analyti. Chem., 2 , 1-25. DOI: 10.1080/03067319.2020.1723570.
Tandon, P. K., Shukla, R. C. and Singh, S. B. (2013). Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor.  Indust. Eng. Chem. Res., 52(30), 10052-10058. DOI: 10.1021/ie400702k.
Thevannan, A., Mungroo, R., and Niu, C. H. (2010). Biosorption of nickel with barley straw. Bioresour. Technol., 101, 1776–1780. DOI: 10.1016/j.biortech.2009.10.035.
Torab-Mostaedi, M., Asadollahzadeh, M. Hemmati, A. R. and Khosravi, A. (2013). Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan Inst. Chem. Eng., 44, 295–302. DOI: 10.1016/j.jtice.2012.11.001.
Vijayaraghavan, K., Rangabhashiyam, S. Ashokkumar, T. and Arockiaraj, J. (2017). Assessment of samarium biosorption from aqueous solution by brown macroalga Turbinaria conoides. J. Taiwan Inst. Chem. Eng., 74, 113‐120. DOI: 10.1016/j.jtice.2017.02.003.
Villen-Guzman, M., Gutierrez-Pinilla, D., Gomez-Lahoz, C., Vereda-Alonso, C., Rodriguez-Maroto, J. M. and, Arhoun, B. (2019). Optimization of Ni(II) biosorption from aqueous solution on modified lemon peel. Environ. Res., 179 B, 1-22. DOI: 10.1016/j.envres.2019.108849.
Vinod, K. G., Rastogi, A. and Nayak, A. (2010). Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. Colloid. Interface Sci., 342, 533–539. DOI: 10.1016/j.jcis.2009.10.074.
Wang, B., Zho, Y., Bai, Z., Luque, R. and Xuan, J. (2017). Chitosan biosorbents with designable performance for wastewater treatment. Chem. Eng. J., 325, 350-59. DOI: 10.1016/j.cej.2017.05.065.
Wang, L. Y., Luo, J., Maye, M. M., Fan, Q. and Qiang, R. D. (2005). Iron oxide-gold core shell nanoparticles and thin film assembly. J. Mater. Chem., 15(18), 1821-32. DOI: 10.1039/B501375E.
Wang, L., Li, J., Jiang, Q. and Zhao, L. (2012). Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Trans., 41, 4544-51. DOI: 10.1039/C2DT11827K.
Wang, Z., Shen, D., Shen, F., Wu, C., and Gu, S. (2017). Kinetics, equilibrium and thermodynamics studies on biosorption of Rhodamine B from aqueous solution by earthworm manure derived biochar. Int. Biodeter. Biodegrad., 120, 104‐114. DOI: 10.1016/j.ibiod.2017.01.026.
Wang, Z., Wang, J., Zhu, L., He, Y. and Duan, T. (2020). Scalable [email protected] core-shell nanoparticle-embedded porous wood for high-efficiency uranium(VI) adsorption.  Appl. Surf. Sci., 508, 144709. DOI: 10.1016/j.apsusc.2019.144709.
Wu, S. P., Dai, X. Z., Kan, J. R., Shilong, F. D. and Zhu, M. Y. (2017). Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin. Chem. Lett., 28(3), 625-632. DOI: 10.1016/j.cclet.2016.11.015.
Xin, S., Zeng, Z., Zhou, X., Luo, W., Shi, X., Wang, Q., Deng, H. and Du, Y. (2017). Recyclable Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio‐electrospraying for heavy metal removal. J. Hazard. Mater., 324, 365‐372. DOI: 10.1016/j.jhazmat.2016.10.070
Xiong, Z., Zhao, D. and Pan, G. (2007). Rapid and complete destruction of perchlorate in water and ionexchange brine using stabilized zero-valent iron nanoparticles. Water Res., 41(15), 3497–505. DOI: 10.1016/j.watres.2007.05.049.
Yalcin, M. S., Özdemir, S. and Kilinc, E. (2018). Preconcentration of Ni(II) and Co(II) by using immobilized thermophilic Geobacillus stearothermophilus SO-20 before ICP-OES determinations. Food Chem.,  266, 126-132. DOI: 10.1016/j.foodchem.2018.05.103.
Yu, H., Pang, J., Ai, T. and Liu, L. (2016). Biosorption of Cu2+, Co2+ and Ni2+ from aqueous solution by modified corn silk: Equilibrium, kinetics, and thermodynamic studies. J. Taiwan Inst. Chem. Eng., 62, 21‐30. DOI: 10.1016/j.jtice.2016.01.026.
Zafar, M. N., Nadeemb, R. and Hanif, M. A. (2007). Biosorption of nickel from protonated rice bran. J. Hazard. Mater., 143, 478–485. DOI: 10.1016/j.jhazmat.2006.09.055.
Zheng, H., Ren, X., Zhang, X., Song, G. Chen, D., Chen, C. (2020). Mutual effect of U(VI) and phosphate on the reactivity of nanoscale zero-valent iron (nZVI) for their co-removal. J. Mol. Liq., 297, 111853. DOI: 10.1016/j.molliq.2019.111853.
Zhu, X., Han, B. and Feng, Q. (2020). Common anions affected removal of carbon tetrachloride in groundwater using granular sponge zerovalent iron. Water Air Soil Pollut., 231(138).  DOI: 10.1007/s11270-020-04494-1.