کاربرد فنون سنجش از دور و GIS در مدل SCS-CN (مطالعه موردی: حوضه بالارود، خوزستان)

نوع مقاله : مقاله پژوهشی


1 استادیار، گروه کشاورزی، دانشگاه پیام نور، تهران، ایران

2 دانشجوی دکتری، گروه سنجش از دور و GIS, دانشکده علوم زمین, دانشگاه شهید بهشتی, تهران، ایران

3 دانشیار، گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد استهبان، استهبان، ایران

4 استادیار، گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد استهبان، استهبان، ایران



یکی از مشکلات اساسی در زمینه پیش­بینی سیلاب در اغلب حوزه­های آبخیز در ایران، نبود داده­های هیدرولوژی و اقلیمی است. از جمله روش­های برآورد حداکثر دبی سیل در حوضه­های فاقد آمار، روش SCS-CN است. در این پژوهش با استفاده از روش فوق، مقدار ارتفاع رواناب و حداکثر دبی سیلاب حوضه بالارود خوزستان برآورد شد. در ابتدا با استفاده از تصویر سنجنده  OLI ماهواره لندست 8 و انجام تصحیح هندسی، بارزسازی و الگوریتم نزدیک‌ترین همسایگی در طبقه­بندی شئ­گرا، نقشه کاربری اراضی تهیه شد. با استفاده از نقشه­های کاربری اراضی مربوط به هر زیرحوضه، گروه هیدرولوژیکی خاک و شماره منحنی تعیین گردید. در نهایت با روش SCS-CN، مقدار رواناب و حداکثر سیلاب حوضه تعیین گردید. نتایج نشان داد حوضه بالارود شامل سه نوع گروه هیدرولوژیکی خاک A، B و C به­ترتیب برابر 64/60، 62/11 و 74/27% مساحت بود. مقدار شماره منحنی CN معادل این حوضه برابر 81/62 حاصل شد. همچنین مقدار حداکثر ضریب نگهداشت (S) مربوط به زیرحوضه­های دوکوهه، انارکی و منگره به­ترتیب 5/7، 8/16 و cm 17 و مقدار معادل آن در حوضه مورد مطالعه برابر cm 15 به­دست آمد. در نهایت ارتفاع رواناب زیرحوضه­های منگره، انارکی، دوکوهه و کل حوضه آبخیز به­ترتیب 05/0، 06/0، 73/0 و cm 12/0 و حداکثر دبی سیل برای آن­ها نیز به­ترتیب 71، 2/67، 435،  m3/s1/282 حاصل شد. نتایج پژوهش همچنین کارایی مفید سنجش از دور و تکنیک‌های GIS را در روش SCS-CN نشان داد.



عنوان مقاله [English]

Application of remote sensing and GIS techniques in SCS-CN model (Case Study: Balarood Basin, Khuzestan)

نویسندگان [English]

  • Mehdi Karami Moghadam 1
  • Ehsan Moradi Motlagh 2
  • Tooraj Sabzevari 3
  • Reza Mohammadpour 4
1 Assist. Professor, Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
2 PhD Student, Remote Sensing and GIS Development, Earth Sciences Faculty, Shahid Beheshti University, Tehran, Iran
3 Assoc. Professor, Department of civil engineering, Islamic Azad University, Estahban Branch, Estahban, Iran
4 Assist. Professor, Department of civil engineering, Islamic Azad University, Estahban Branch, Estahban, Iran
چکیده [English]

One of the main problems in flood predicting is often lack of hydrological and climatic data in most basins of Iran. Soil Conservation Service Curve Number (SCS-CN) method is used to estimate the maximum flood discharge in the ungauged basins. In this study, the runoff height and the maximum flood discharge were estimated by SCS-CN method in Balarood Basin on Khuzestan Province of Iran. Firstly, geometric correction, enhancement and nearest neighbor algorithm of object-oriented classification on Landsat 8 satellite’s OLI sensor images were used to prepare the land use maps. Then the soil hydrological groups and curve number (CN) were determined for each sub-basin using land use map. Finally, the runoff and maximum flood discharge of the basin were estimated by SCS-CN method. The results indicated that the Balarood basin had three soil hydrological groups A, B, and C, with 60.64, 11.62, and 27.74% respectively. The CN of the basin was 62.81. The maximum soil water retention (S) of Dokohe, Anarki and Mongareh sub-basins and the basin calculated were 7.5, 16.8, 17, and 15 cm respectively. The height of runoff and maximum flood discharge of them were estimated 0.05, 0.06, 0.73, 0.12 cm and 71, 67.2, 435, 282.1 m3/s respectively. The results also demonstrated the good efficiency of remote sensing and GIS techniques in study on SCS-CN method.

کلیدواژه‌ها [English]

  • Balarood basin
  • GIS
  • Nearest Neighbor Algorithm
  • Object-oriented classification
  • runoff
Adeli, M. and Mohammadi, Z. (2019). Calibration and evaluation of SCS method for estimating flood runoff in Pasekohak Watershed. Irrig. Sci. Eng., 42(3), 1-15 [In Persian].
Alizadeh, A. (2012). Principles of applied hydrology. University of Emam Reza Press. Mashhad [In Persian].
Anonymous. (2005). Hydrological studies of the first stage of Balarud irrigation and drainage network. Dezab Consulting Engineers Co. Ahvaz [In Persian].
Ara, Z. and Zakwan, M. (2018). Estimating runoff using SCS curve number method. Int. J. Emerg. Technol. Adv. Eng., 8(5), 195-200.
Asadi, M., Jabbari, I. and Hesadi, H. (2020). Flood modeling in arid and semi-arid areas using HEC-HMS model (Case Study: Esteghlal Minab Basin). Quant. Geomor. Res., 8(3), 17-33 [In Persian].
Behzad, A., Fozoni, B. and Hakimi, F. (2011). Estimating the flood water potential with emphasis on geomorphologic characteristics in Leyafo watershed by using SCS method. Geogr, 5(16), 1-16 [In Persian].
Behzad, A., Moghimi, E. and Asadian, F. (2016). Estimating flood potential of Germi basin with emphasize on risk management by using SCS method (Rudbar, Gilan Provence). J. Environ. Hazard. Manag., 3(4), 315-330 [In Persian].
Chandel, S. and Hadda, S. (2017). Quantification of surface runoff in Patiala-Ki-Rao watersheds using modified NRCS model: A case study. J. Appl. Nat. Sci., 9(3), 1573-1581.
Faizizafeh, B. (2019). A comparative evaluation of Pixel-Based and Object-Oriented processing techniques used for the classification of Aster Satellite imageries and extracting agricultural and orchard maps in the Eastern Margin of Urmia Lake. Sci. Res. Quart. Geogra. Data, 28(109), 167-183 [In Persian].
Golkarian, A., Naghibi, S. A. and Davuodi Moghaddam, D. (2014). Capability assessment of GIUH method for predicting the dimension of instantaneous unit hydrograph and compare it with Snyder, SCS and Triangular methods. J. Water Soil, 28(2), 440-450 [In Persian].
Hejazi, A. and Mezbani, M. (2017). The estimation of runoff volume and maximum discharge by using curve number (CN) Method (case study in Darrehshahr Drainage Basin).  Hydrogeomorph., 2(5), 63-81 [In Persian].
Hoeft, C. C. (2020). Incorporating updated runoff curve number technology into NRCS directives. Watershed Management Conf., May 20–21, Henderson, Nevada, USA.
Jafar Biglo, M., Hoseini, S. M. and Riahi, S. (2015). Effects of land cover change and land use in Tajrish region on the Darband river discharge regime. Quant. Geomor. Res., 3(3), 95-113 [In Persian].
Jalilian, A. H. (2017). Sedimentary Environments. Payame Noor University Press. Tehran [In Persian].
Mahdavi, M. (2007). Applied hydrology. University of Tehran Press. Tehran [In Persian].
Mishra, S. K. and Singh, V. P. (2013). Soil conservation service Curve Number (SCS-CN) methodology. Springer Netherlands Press.
Mokhtari, D., Valizadeh Kamran, K. and Moradi Motlagh, E. (2020). The role of interpolation methods for the production of R factor to estimate soil erosion of basins using RUSLE model (Case Study: Balarood Basin). Quant. Geomor. Res., 8(3), 222-241 [In Persian].
Moradi Motlagh, E. (2017). The rule of remote sensing resources and GIS techniques changes in results of estimating the erosion and sedimentation of Balarood River's basin by RUSLE model. M. Sc. Dissertation, University of Tabriz, Tabriz, Iran [In Persian].
Moradi Motlagh, E. and Mokhtari, D. (2017). Determining the Curve Number runoff map of Balarood basin Using satellite images, Remote Sensing and GIS techniques. Proc. 2017, 1ed Int. Conf. on Silk GIS 24-36 May. Industrial University of Isfahan, Isfahan, Iran [In Persian].
Moradi Motlagh, E. and Valizadeh Kamran, K. (2016). Evaluation of Pixel-based and Object-Oriented methods in land use/cover classification of Andimeshk City using Landsat 8 satellite image sensor. Proc. 2016, 2th Int. Conf. on Civil Engineering, Architecture and Urban Development. 27-29 December.  Shahid Beheshti University, Tehran. Iran [In Persian].
Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S. and Weng, Q. (2011). Per-Pixel vs. Object-Based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ., 115(5), 1145–1161.
Odiji, C. A., Aderoju, O. M., Ekwe, M. C., Oje, D. T. and Imhanfidon, J. O. (2020). Surface runoff estimation in an upper watershed using geo-spatial based soil conservation service-curve number method. Global J. Environ. Sci. Manage., 6(3), 415-428.
Psomiadis, E., Soulis, K. X. and Efthimiou, N. (2020). Using SCS-CN and earth observation for the comparative assessment of the hydrological effect of gradual and abrupt spatiotemporal land cover changes. Water, 12(5), 1386.
Rasoli, A. (2014). Principles of applied remote sensing satellite image processing. Tabriz University Press. Tabriz.  [In Persian].
Refahi, H. G. (2014). Water erosion and conservation. University of Tehran Press. Tehran [In Persian].
Roostaie, S., Mosavi, R. and Alizadehgorgi, G. (2017). Watershed flood zoning map preparation using CN and GIS/RS methods: A Case Study on Nekarood. Quant. Geomor. Res., 6(1), 108-118 [In Persian].
Salmani, S., Ebrahimi, H., Mohammadzade, K. and Valizadeh Kamran, K. (2019). Evaluating efficiency of Object-Based classification techniques used to extract land use from IKONOS satellite imageries. Sci. Res. Quart. Geogra. Data, 28(111), 205-215 [In Persian].
Satheeshkumar, S., Venkateswaran, S. and Kannan, R. (2017). Rainfall–runoff estimation using SCS–CN and GIS approach in the Pappiredipatti Watershed of the Vaniyar sub basin, South India. Model. Earth. Syst. Environ., 3(1), 24.
Shadeed, S. and Almasri, M. (2010), Application of GIS-based SCS-CN method in west Bank catchments, Palestine. Water Sci. Eng., 3(1), 1-13.
Shi, W. and Wang, N. (2020). Improved SMA-based SCS-CN method incorporating storm duration for runoff prediction on the Loess Plateau, China.  Hydrol. Res., 51(3), 443-455.
Shrestha, M. P. and Jayaraj, K. G. (2018). Application of SCS-CN model in runoff estimation. Int. J. Res. Appl. Sci. Eng. Technol., 6(3), 2363-2369.
Verma, S., Mishra, S. K. and Verma, R. K. (2020). Improved runoff curve numbers for a large number of watersheds of the USA. Hydrol. Sci. J., 65(16), 1-11.