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The importance of regulating the supply and demand regime shows the need
for planning in the exploitation of surface water resources. The aim of this
study was to compare the performance of two models of Bayesian network
(BN) with a probabilistic approach and MLP neural network for flow
prediction and selection of the best structural model. Monthly meteorological
data including rainfall, monthly average temperature, evaporation, and the
volume of water transferred from five hydrometric stations were introduced as
input data to the models, and runoff to the dam was considered as predictable.
Input data with different layouts were introduced to BN and MLP models.
The results were obtained by comparing 17 selected models according to the
index criteria: Nash-Sutcliffe coefficient (NS), mean square error (MSE),
mean square error root (RMSE), and MEAN absolute prediction error
(MAPE). The best model in BN model with 43.3% similarity and index
criteria was estimated to be -3.98, 300, 17.3, and 0.06, respectively. The MLP
model with 80% similarity and index criteria were introduced as -10.3, -8266,
23.9, and 122.3 in the best model, respectively. As a result, both models
performed well in runoff estimation, but the BN model had much better
accuracy in forecasting. Finally, a structural pattern with acceptable results in
both MLP and BN models was identified.

© Authors, Published by Environment and Water Engineering journal. This is an open-access
article distributed under the CC BY (license http://creativecommons.org/licenses/by/4.0/).

(@WoNIRS

Introduction

flexibility. Water resources management is a
complex matter that involves a high level of

The importance of regulating the supply and
demand regime on the end hand and meeting the
environmental needs of the aquifer for river life
has highlighted the need for integrated
management of water resources with high
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uncertainty related to climate, economic, and
demographic changes in planning for the
exploitation of surface resources. The prediction
of runoff to the dam has been a great help for
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Efficiency Comparison of Models in Predicting Runoff

these plans. The aim of this study was to
compare the performance of two models of
Bayesian network (BN) with a probabilistic
approach and MLP neural network for flow
prediction. Selecting the best structural model for
flow prediction is another goal of the present
study.

Materials and Methods

To predict the inflow into the dam, a comparison
of two models of Bayesian Network (BN) with a
probabilistic approach and MLP neural network
was used. Monthly meteorological data including
average  monthly  rainfall,  temperature,
evaporation as well as the volume of water
transferred from five hydrometric stations were

evaporation
temperature  (T),
ofJoostenn (Q,), Joosten Alizan (Q,), Joosten

introduced as input data to the models, and
runoff to the dam was considered as predictable.
In order to model the monthly flow, 80% of the

data were considered for training, 15% for
validation and 5% of the data for validation

based on trial and error. Input data with different
layouts were introduced to the models. Table (1)
presents the structure of the proposed patterns.
Meteorological variables of precipitation (R),
(E) and monthly average
and discharge variables

Mehran (Q5), Glink (Q,) and Dehdar (Q) stations

also flow entry to the dam with a delay of one

month was used as a predictor.

Table 1 Selected patterns as the input

Detned Qumen T E R Qs Qs Qs Q: Q

1 v v v v v v v X v
2 4 v v b 4 v v v v v
3 4 v v b 4 v v b 4 X v
4 4 v v v b 4 v b 4 v b 4
5 v b 4 b 4 v v v v v v
6 v b 4 b 4 X v v v v v
7 v b 4 v v b 4 v X X v
8 4 v v v v v b 4 v v
9 4 v v v v v v v v
10 v X X b 4 b 4 v b 4 b 4 b 4
11 v b 4 b 4 b 4 v v X X v
12 v b 4 b 4 v v v X X v
13 v v v v v v X X v
14 v X X v v v 4 b 4 v
15 v X X v b 4 v b 4 b 4 v
16 v X X v b 4 v 4 4 v
17 v b 4 b 4 v v b 4 v v v

Results —l 20 NS e MSE e RMSE e MAPE

The results of runoff prediction of seventeen V&Y

patterns are given in Figures (1) and (2). From a2 Y

the comparison of these figures, the accuracy of e Sl o o

each pattern of dealing with the models can be vo £y 1000 ¥ £

seen. According to Fig. (1), patterns 3, 10 and 5 %0

have recorded the most errors. And they are b o é@ Bl

unacceptable patterns for flow prediction. o -

A v
1 & A
V. & 3 &
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Fig. 1 Results of runoff prediction in BN model
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Fig. 2 Results of runoff prediction in MLP model

Comparing the above two forms, it was found
that the accuracy of the neural network is lower
than the Bayesian network. In pattern No. 2, by
introducing all five hydrometric stations and
removing the average rainfall data of the three
meteorological stations upstream of the dam, the
inlet runoff to the dam was predicted. The resulst
showed that the artificial neural network
recorded 40% similarity. This pattern has a high
accuracy with a Nash coefficient of -3.9 and this
pattern has recorded a similarity of 33.3% in the
Bayesian network model. This template has a
high error rate and a relatively good emission
coefficient.

Pattern No. 6 by introducing all five hydrometric
stations and deleting the average data of the three
meteorological stations upstream of the dam, the
inlet runoff to the dam was predicted. The
modeling results showed that the artificial neural
network recorded a similarity of 66.6. And this
pattern has recorded a similarity of 50% in the
Bayesian network.

Pattern No. 9 also introduced all five
hydrometric stations and with the average data of
three meteorological stations upstream of the
dam, the inlet runoff to the dam was predicted.
The results showed that the artificial neural
network model recorded a similarity of 46.6%.
The results also showed that the Bayesian
network model recorded 36.6% similarity. This
pattern is more accurate in the Bayesian network.

Pattern No. 12: In this model, by removing the
Mehran and Alizan hydrometric stations and also
by removing the average temperature and
evaporation data of the three meteorological
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stations upstream of the dam, the incoming
runoff to the dam was predicted. The results
showed that the artificial neural network models
recorded 40% similarity. This pattern with high
NMS coefficient and RMSE error is not a good
pattern to predict. The results also showed that
the Bayesian network model has recorded 43.3%
and this pattern was recognized as the best
pattern with the highest accuracy of the Bayesian
network and with RMSE 17.3 as the best model
with the lowest predicted data.

Pattern No. 13: This pattern was predicted by
removing the Mehran and Alizan hydrometric
stations to predict the runoff to the dam. The
results showed that the MLP model, with 80%
similarity, recorded the highest similarity among
all models in the artificial neural network, while
the RMSE error was 23.9 and the NS coefficient
was -10.29. And this pattern in Bayesian model
was 43.3% similar to the recorded data.

Conclusion

The existence of two definite and probabilistic
models together and their simultaneous
comparison cover each other’s weaknesses are a
good combination for making managerial
decisions. Eventually it was found that both
models performed well in runoff estimation but
the BN model had much better accuracy in
forecasting. And the importance of each
hydrometric station and meteorological data was
determined by comparing the structure of the
patterns with the percentage of acceptable
similarities; there are three hydrometric stations
(Joostan, Glink and Dehdar) and the rainfall
parameter are common in BN and MLP models.
The best patterns, taking into account the error
criteria and the percentage of similarity with the
recorded data in the BN model, are patterns No.
12 and 9. And in MLP model, patterns 2 and 13
had the best performance.

Data Availability
The data can be sent by email
correspounding author upon request.
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Defined patterns Q1 Q: Qs Qs Qs R E T Q dam (t-1)
1 v X v v v v v v v
2 v v v v v X v v v
3 v X X v v X v v v
4 X v X v X v v v v
5 v v v v v v X X v
6 v v v v v X X X v
7 v X X v X v v X v
8 v v X v v v v v v
9 v v v v v v v v v
10 X X X v X X X X v
1 v X X v v X X X v
12 v X X v v v X X v
13 v X X v v v v v v
14 v X v v v v X X v
15 v X X v X v X X v
16 v v v v X v X X v
17 v v v X N N X X v
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